
The transfinite recursion theorem:
a fine structure analysis∗

Josep Maria Blasco
Espacio Psicoanalítico de Barcelona

Balmes, 32, 2º 1ª – 08007 Barcelona
jose.maria.blasco@epbcn.com

+34 93 454 89 78

September 25, 2006

Abstract

It is often stated in the set-theoretical literature that some construc-
tions (for example, Gödel’s constructible universe L, or forcing extensions)
can be carried out using a finite number of axioms. Most of these construc-
tions are based or make heavy use of the transfinite recursion theorem.
In this article we provide a completely explicit analysis of the recursion
theorem. If φ is the formula on which we do the recursion, we calculate
the exact set of axioms needed to prove the recursion theorem for φ, as a
recursive function of (the code of) φ. In the way to this result, we develop
a framework for the fine-structure analysis of ∆0 formulas, and exercise
it to find explicit ∆0 expressions for usual concepts, like being a pair or
being a function, that are necessary to develop the basic set-theoretical
concepts needed to express the transfinite recursion theorem.

Contents

I The basics 4
1 Introduction 4

1.1 Statement of our task . 4
1.2 The problem of defined notions 4
1.3 The contingency of definitions and proofs 4
1.4 The absence of a normal-form theorem for Delta0 formulas . 4
1.5 The unmanageability of pure systems 5
1.6 Ways to a solution . 5

1.6.1 Metafunctions vs. defined notions 5
∗URL of this document: https://www.epbcn.com/pdf/jose-maria-blasco/

2006-09-25-The-transfinite-recursion-theorem-a-fine-structure-analysis.pdf.
This article was written during the 2005-2006 academic year for the Diploma d’Estudis
Avançats of the doctorate program “Lógica y Fundamentos de las Matemáticas” (Logic and
Foundations of Mathematics) in the Department of Logic, History and Philosophy of Science
of the University of Barcelona.

1

https://www.epbcn.com/equipo/jose-maria-blasco/
https://www.epbcn.com/
mailto:jose.maria.blasco@epbcn.com
https://www.epbcn.com/pdf/jose-maria-blasco/2006-09-25-The-transfinite-recursion-theorem-a-fine-structure-analysis.pdf
https://www.epbcn.com/pdf/jose-maria-blasco/2006-09-25-The-transfinite-recursion-theorem-a-fine-structure-analysis.pdf

1.6.2 Metafunctions vs. formula transformations 6
1.6.3 Computer programs do it better 6

1.7 Structure of this article . 6
1.8 Further work . 7
1.9 Acknowledgements . 8

2 Notation, basic facts and definitions 9
2.1 Syntax . 9
2.2 Elementary transformations 12

3 Denoting complexities 15

4 Set Theory: the first axioms 16
4.1 “Elegant” axioms vs. “expressive” axioms 16
4.2 The Empty Set Axiom . 17
4.3 The Extensionality Axiom 17
4.4 The Foundation Axiom . 17

5 Enumerations and quantifiers 18
5.1 The Pairing Axiom . 18
5.2 The Union Axiom . 18
5.3 Finite sets . 18
5.4 Collapsing quantifiers . 19

6 Separation and collection 21
6.1 The Separation Axiom . 21
6.2 The Collection Axiom . 21
6.3 Strengthening Collection . 22

7 Tuples 23
7.1 Creating tuples . 23
7.2 Ordered pairs . 24

7.2.1 Definition . 24
7.2.2 Complexity of “being an ordered pair” 24

8 Classes, relations and functions 25
8.1 Classes . 25
8.2 Class functions . 25
8.3 Relations . 25
8.4 Functions . 26

II Transfinite induction and recursion 28
9 Transfinite epsilon-induction and recursion 28

9.1 Suitable functions . 28
9.2 Compatibility of suitable functions 30
9.3 Building G . 31
9.4 G has a Sigma1 equivalence 31
9.5 G is a partial function . 32
9.6 G is total . 32
9.7 Summary of axioms needed for recursion 33

9.7.1 Delta0 case . 33
9.7.2 Sigma1 case . 33

2

III Appendix 34
A An example: the transitive closure 34

B A curiosity: The Pi1-foundation axiom for the transitive
closure case 36

C Metafunctions reference 40

3

Part I
The basics
1 Introduction
1.1 Statement of our task

This article is about formulas. We want to find a solution to the
following problem:
Problem 1.1. Which is the exact set of axioms of Kripke-Platek Set
Theory (KP) needed to prove the transfinite ∈-recursion theorem for a
given formula φ? The solution should ideally be expressed as a primitive
recursive formula (i.e., a computer program) that takes φ as an argument
and returns as its output the list of axioms of KP in the pure language of
set theory with equality.

Four aspects of this problem make it non-trivial.

1.2 The problem of defined notions
One is the requirement that the axioms are expressed as formulas of

the pure language of set theory with equality: there is a (quite large)
number of very good books that prove the ∈-recursion theorem, but all of
them make use of defined notions; this is standard mathematical practice.
As they make use of defined notions, they either extend the language, so
that we are no longer working in L = {∈,=}, or they state that defined
notions are mere abbreviations, and can, in principle, be undone so that
the formula becomes a formula of L. When they write in principle, one
has to pay attention: they mean that nobody does it in practice (because
it is uninteresting, it would be said; but mainly, as we will see, because
it is practically impossible1). But then we have the problem that nobody
really knows which are the real, effective formulas we are dealing with,
because they are full of defined notions, which are in turn defined over
other defined notions, etc.

1.3 The contingency of definitions and proofs
The second problem is that in normal mathematics we don’t care which

one of several definitions is used, as long as they are all proved equivalent,
and we don’t care which proof of a theorem we use, as long as the proof
is correct. But in our case, since we are interested in effective formulas,
one definition or the other, one proof or the other, would lead to vastly
different formulas. Clearly, we would need a way to decide, once given
two definitions or two proofs, which one is better, that is, from our point
of view, which one leads to simpler formulas. But this immediately leads
us to our third problem.

1.4 The absence of a normal-form theorem for ∆0

formulas
Remember that we are working in KP. In KP there are two kinds of

axioms: simple axioms, such as Extensionality, Empty Set, Pairing and
1If this seems abusive, take a look at Appendix B, especially the last formula.

4

Union, and axiom schemas, namely Separation, Collection and Founda-
tion. Simple axioms do not count, in the sense that most proofs use all
of them, and anyway, except maybe for some variable renaming, there is
only one instance of each. But the axiom schemas are parameterized in
the metalanguage by a formula φ, and this formula cannot be any formula.
In particular, φ should be ∆0 for Separation and Collection; and, while
stronger logical forms are allowed for Foundation, it is desirable that the
complexity of φ is somehow kept as low as possible.

And here our third problem arises: while we try to keep a formula “as
simple as possible”, we are faced with the following question: between two
∆0 formulas, which one is simpler? Unfortunately, there is no definite
answer to that question, because there is no normal-form theorem for
∆0 formulas. The reason for that is very simple: while we can always
transform a formula of the form ∀xφ∧ψ into a formula of the form ∀x(φ∧
ψ) (renaming some variables if necessary), a formula of the form (∀x ∈
y)φ ∧ ψ can not in general be transformed into (∀x ∈ y)(φ ∧ ψ) (think
about the case where y is empty; the ∃ case is symmetrical).

This means that we cannot move all quantifiers in an orderly fashion
to the beginning of the formula, and therefore that, at least in some cases,
there will be no clear, unambiguous way, to decide which of two formulas
is the simplest one.

1.5 The unmanageability of pure systems
The fourth problem is easily explained: assume that we have labori-

ously built a set of primitive recursive formulas that constitute a solution
to our problem. These formulas will depend on the exact definitions we
have chosen for the usual notions of matematics, and on the concrete,
detailed proofs we have chosen for the theorems we need. If we later dis-
cover a simpler proof for some of those theorems, or a simpler definition
for our defined notions, we should rebuild all our formulas according to
these modifications, and this is simply unmanageable.2

1.6 Ways to a solution
In order to be able to manage these four problems, we will have to

take a number of decisions which will make the notation used throughout
this article a little unusual:

1.6.1 Metafunctions vs. defined notions
Instead of using defined notions, we will define a number of metafunc-

tions. These metafunctions will be similar to the defined notions, but
they will be also concrete, effective, non-substitutable for equivalent no-
tions. For example, if f is a function then “x belongs to the domain of
f”, x ∈ dom f , means that there is a pair p ∈ f such that p = ⟨x, y⟩.
But if x is the first component of p, following the Kuratowski definition of
ordered pairs, this means that x belongs to all elements e of p. Therefore,
x ∈ dom f can be expressed as

(∃p ∈ f)(∀e ∈ p)(x ∈ e). (1)
2If you are not convinced by this last assertion, you did not take a look at Appendix B.

Do it now, and you will come back as a believer.

5

Hence, we will define a metafunction InDomain[x, f] to be the formula (1)
(the variable e is irrelevant, and will be supplied automatically by the
metafunction; if we need to specify it for whatever reason, we will write
InDomain[x, f ; e]: the semicolon will serve to separate “essential” variables
from “auxiliary” ones).

1.6.2 Metafunctions vs. formula transformations
We will need to effectively show that several of the formulas we are

dealing with are Σ1, or can be transformed into Σ1 formulas. To this
effect, we will define another set of metafunctions.

Several of them will transform formulas into logically equivalent ones,
using only pure logic as their justification. For example, since a formula
of the form

(∃x1 ∈ y1)...(∃xn ∈ yn)∃zφ (2)
can be transformed (if certain conditions about the variables are met) into
an equivalent formula of the form

∃z(∃x1 ∈ y1)...(∃xn ∈ yn)φ (3)

by applying only rules of pure logic, we will define a metafunction MoveUp
that will transform formulas like (2) into their Σ1 equivalents (3).

Other metafunctions will transform formulas, but this time applying
axioms of KP, i.e., not by pure logic alone. A clear example is the follow-
ing: since we can transform formulas of the form

(∀x ∈ y)∃zφ (4)

into formulas of the form

∃w(∀x ∈ y)(∃z ∈ w)φ (5)

by applying Collection, we will define a metafunction Collect that will take
as argument a formula like (4) and a new variable w, and return a formula
like (5) as its result.

1.6.3 Computer programs do it better
To handle the problem of unmanageability of formulas, and to be able

to redo all our calculations in case some defined notion or proof may
change, we will use a computer program that effectively implements all our
metafunctions and effectively builds our formulas. This way, if something
gets altered later, a few changes in the computer program will allow us
to automatically rebuild all formulas. Program listings for a preliminary
implementation of such a program are included as an Annex to this article.

1.7 Structure of this article
The structure of this article is as follows: part I, “The Basics”, is

divided into eight sections. The first section is this Introduction. Sec-
tion two, Notations, basic facts and definitions, fixes the notation used
throughout the article, and introduces a number of syntactical transfor-
mations, defined as metafunctions, which will be later used in several of
the proofs. Section three, Denoting complexities, introduces a notation
for a specific measure of complexity for ∆0 formulas. Section four, Set
Theory: The first axioms, introduce the Empty Set, Extensionality and

6

Foundation axioms; some metafunctions are defined for Foundation. Sec-
tion five, Enumerations and quantifiers, introduce the Pairing and Union
axioms, define syntactically finite sets, and prove a theorem that collapses
several existential quantifiers into one. Section six, Separation and Collec-
tion, introduces the Separation and Collection axioms and several related
metaoperations, and proves a strong form of Collection that will be needed
in the proof of the recursion theorem. Section seven, Tuples, defines tu-
ples and several related metaoperations. Those will be needed in section
eight, Classes, relations and functions, when the higher-level mathemati-
cal notions used in this article, besides recursion itself, are presented.

Part II, “Transfinite induction and recursion”, consists of a single sec-
tion, in which the Transfinite ∈-Recursion Theorem is proved in full detail,
keeping track of all the axioms used and all the formulas involved.

Three appendixes are included: in Appendix A, “An example: the
transitive closure” we evaluate the complexity of the axioms needed to
prove the existence of the transitive closure of a set. In Appendix B,
“A curiosity: The Π1-Foundation axiom for the transitive closure case”,
we calculate in an effective way the instance of Π1-Foundation needed
to prove the existence of the transitive closure of a set. In Appendix C,
“Metafunctions reference”, we give a complete alphabetical list of all the
metafunctions used throughout this article.

1.8 Further work
The results presented in this text can be improved and extended in

several ways. Here is a non-comprehensive list, in no particular order.

1) Optimizing formulas used in this text. Some of the formulas have
alternative equivalents of less complexity. For example, Tuplesn can be
improved in the following way when n ≥ 2: since we already know that all
elements are tuples when producing the first tuple, we could avoid some of
the tests imposed on subsequent tuples. This would shorten the definition
of Fun(f), for example.

2) Finding new ways to further optimize formulas. An example: al-
though (∃x ∈ y)φ ∧ ψ is not equivalent in general to (∃x ∈ y)(φ ∧ ψ),
if we know that y ̸= ∅ (for example, because there is some ∃z ∈ y at
a higher level in the syntax tree) then the equivalence is possible (with
some variable renaming if necessary).

3) Exploring new measures of complexity. The notation we have devel-
oped for ∆0 complexities is a good start: it allows us to get an impression
of the nature of the involved formulas. However, many other complexity
measures suggest themselves: the number of bounded quantifiers used,
the height or the width of the syntax tree, or even the length of the for-
mula (i.e., the number of symbols used). All these measures could be used
to try to tackle the question of when a ∆0 formula is simpler than another
formula.

4) Applying the machinery to new problems. The first, almost manda-
tory, application of this machinery must be to develop the theory of the
ordinal numbers and ordinal recursion. Further applications could be
fine-structure analysis of the constructible universe L, or of Forcing.

7

1.9 Acknowledgements
I’d like to thank Joan Bagaria, ICREA Research Professor at the Uni-

versity of Barcelona and advisor of this article, for his continued patience,
support and encouragement.

8

2 Notation, basic facts and definitions
2.1 Syntax
Metadefinition 2.1. L = {∈,=} is the language of Set Theory with
equality.
Metadefinition 2.2 (Variables and stems). Var(L) is the countable set
of variables of L. In some cases, we will be interested in endowing
variables with a well-order: as a consequence, we will be able to speak of
“the minimum variable such that...” and similar constructions. We may
also consider variables as having some kind of substructure: for example,
we may consider variables as being formed from a finite number of stems
(say the set A = {a, b, c, ..., z}) enhanced by subscripts and superscripts
taken from infinite sets (for example, N, or N ∪A). In this case, we will
say that the variables are derived from the stem.
Example. The following are variables: x, y, X, α, Γ, x1, yβ , x32. If x is
a stem, then x1, x4, x2α, etc., are variables derived from this stem.

Form(L) is the set of formulas of L, recursively defined below.

Notation (Objects and metaobjects). Roman italics will be used for vari-
ables like v which range over sets; if a variable v ranges over Var(L),
Form(L), etc., we will use a sans-serif font. We will also use a sans-serif
font for meta-functions.
Notation (Metafunctions). If F is a metafunction that operates on for-
mulas, variables, etc., and returns a formula, we will write its arguments
between brackets, thus: F[h, v1, v2]. In many cases the resulting formula
will need to use auxiliary (bound) variables; these can be omitted, as they
will be automatically generated by the metaformula. If for whatever reason
we want precise control over these auxiliary variables, we can indicate it
by specifiying them after a semicolon: for example, F[h, v1, v2; e1, e2].
Notation (Metadefinitions by cases). In many cases we will give par-
tial definitions of metaformulas by showing partially the forms of their
arguments. For example we might partially define a metafunction F by
writing

F[∀vh] def
= ∃f¬h,

where h ranges over Form(L) and v ranges over Var(L). Such a definition
is to be read as partial definition of F, which says nothing about the value
of F for other kind of arguments, for example it says nothing about F[∃vh].
Many partial definitions constitute a (maybe still partial) definition by
cases. Finally, a metafunction F is to be considered undefined when no
partial definition is applicable.
Notation (Vector notation). We will use vector notation to allow easier
reading: if x1, ..., xn ∈ Var(L), we can write x⃗ instead of x1, ..., xn if n is
clear from the context.

We now begin the recursive definition of Form(L). Formulas will be
defined in 2.11 as finite-length preformulas (2.10); a preformula es either
an atom (2.3) or a factor (2.7) or a conjunction (2.8) or a disjunction (2.9);
disjunctions are composed of one or more conjunctions, conjunctions of
one or more factors, factors are either atomic, parenthesized formulas,
negated formulas, or (unboundedly) quantified formulas, and atomic for-
mulas are (in)equalities or formulas of the form v1 ∈ v2 or v1 /∈ v2. Those

9

definitions do not incur in a vicious circle because we are imposing that
formulas should be of finite length: without this limitation, we could have
formulas of the form

∀x1∀x2∀x3...φ
with an infinite number of xi.

Implication, double implication and bounded quantifiers are presented
as defined notions.
Metadefinition 2.3 (Atomic formulas).

Atom(L) def
= {v1 = v2, v1 ∈ v2 : v1, v2 ∈ Var(L)}.

Metadefinition 2.4 (Negated atoms). Let v1, v2 ∈ Var(L). Then

v1 ̸= v2
def
= ¬(v1 = v2), and

v1 /∈ v2
def
= ¬(v1 ∈ v2).

Metadefinition 2.5 (Implication and double implication). Let f1, f2 ∈
Form(L). Then,

f1 → f2
def
= ¬(f1) ∨ f2, and

f1 ↔ f2
def
= (¬(f1) ∨ f2) ∧ (¬(f2) ∨ f1).

Metadefinition 2.6 (First-order bounded quantifiers). Let f ∈ Form(L)
and v1, v2 ∈ Var(L). Then,

(∀v1 ∈ v2)f def
= ∀v1(v1 ∈ v2 → f),

and
(∃v1 ∈ v2)f def

= ∃v1(v1 ∈ v2 ∧ f).
Metadefinition 2.7 (Factors).

Factor(L) def
= Atom(L)
∪ {(f),¬(f) : f ∈ Form(L)}
∪ {∀v(f) : v ∈ Var(L), f ∈ Form(L)}
∪ {∃v(f) : v ∈ Var(L), f ∈ Form(L)}.

It is immediate that Atom(L) ⊆ Factor(L).
Metadefinition 2.8 (Conjunctions).

Conj(L) def
= {f1 ∧ ... ∧ fn : n > 0, fn ∈ Factor(L) for all n}.

The case n = 1 shows that Factor(L) ⊆ Conj(L).
Metadefinition 2.9 (Disjunctions).

Disj(L) def
= {c1 ∨ ... ∨ cn : n > 0, cn ∈ Conj(L) for all n}.

The case n = 1 shows that Conj(L) ⊆ Disj(L).
Metadefinition 2.10 (Preformulas).

PreForm(L) def
= Atom(L) ∪ Factor(L) ∪ Conj(L) ∪ Disj(L).

Notice that, since Atom(L) ⊆ Factor(L) ⊆ Conj(L) ⊆ Disj(L), we could
have defined simply PreForm(L) def

= Disj(L).

10

Metadefinition 2.11 (Formulas).

Form(L) def
= {f ∈ PreForm(L) : f uses only a finite number of symbols}.

Metadefinition 2.12 (Variables of a formula). We define the variables
of a formula recursively over Form(L) as follows:

Vars[v1 = v2]
def
= {v1, v2}, Vars[v1 ∈ v2]

def
= {v1, v2},

Vars[(f)] def
= Vars[f], Vars[¬(f)] def

= Vars[f],
Vars[∀v(f)] def

= Vars[f] ∪ {v}, Vars[∃v(f)] def
= Vars[f] ∪ {v},

Vars[f1 ∧ ... ∧ fn]
def
= Vars[f1] ∪ ... ∪ Vars[fn],

Vars[c1 ∨ ... ∨ cn]
def
= Vars[c1] ∪ ... ∪ Vars[cn].

[Where v, v1 and v2 are variables, f is any formula, the fi’s are factors,
and the ci’s are conjunctions.]
Metadefinition 2.13 (Free variables). We define the free variables of
a formula recursively over Form(L) as follows:

Free[v1 = v2]
def
= {v1, v2}, Free[v1 ∈ v2]

def
= {v1, v2},

Free[(f)] def
= Free[f], Free[¬(f)] def

= Free[f],
Free[∀v(f)] def

= Free[f] \ {v}, Free[∃v(f)] def
= Free[f] \ {v},

Free[f1 ∧ ... ∧ fn]
def
= Free[f1] ∪ ... ∪ Free[fn],

Free[c1 ∨ ... ∨ cn]
def
= Free[c1] ∪ ... ∪ Free[cn].

[Where v, v1 and v2 are variables, f is any formula, the fi’s are factors,
and the ci’s are conjunctions.]

It is immediate from the above definitions that for all formulas f,
Free(f) ⊆ Vars(f).
Metadefinition 2.14 (New (free) variables). Let fi, i = 1, ..., n be for-
mulas, and let S ⊂ Var(L) be a set of variables. A new variable (with
respect to the fi’s and S is

min(Var(L) \ (S ∪
∪

1≤i≤n

Vars(fi)),

and a new free variable is

min(Var(L) \ (S ∪
∪

1≤i≤n

Free(fi)).

Metadefinition 2.15 (Equivalent formulas). Two formulas f and g may
be logically equivalent, and in this case we will write

f ≡ g,

and say that f and g are logically equivalent formulas, or equivalent by
pure logic.

Similarly, f and g may be made equivalent by assuming some finite set
of axioms A = {ai : 1 ≤ i ≤ n} ⊂ KP. In this case, we will also write

f ≡ g,

and say that f and g are equivalent by virtue of A, or modulo A, or, more
simply, by A.

11

Bounded quantifiers, (double) implication and negated relations are
defined meta-notions. The introduction of n-way conjunctions and dis-
junctions in the syntax, for n > 2, is consistent with normal mathemat-
ical practice, and a trivial consequence of the associativity of ∧ and ∨.
Notice that in our syntax, again corresponding to normal practice, ∧ has
precedence over ∨.

Having defined our syntax, we will now allow for the possibility of
slightly relaxing our notation, and use φ, ψ, θ, etc. to denote formulas. If
there is no ambiguity, we will also allow the use of x, y ∈ Var(L) instead
of the more proper but less readable v1, v2 ∈ Var(L).

If φ ∈ Form(L), we write φ(x1, ..., xn) ∈ Form(L) to indicate that
{x1, ..., xn} ⊇ Free[φ].

2.2 Elementary transformations
Metadefinition 2.16 (Negation of a formula). The negation of a for-
mula f is defined recursively as follows:

Negate[v1 = v2]
def
= v1 ̸= v2, Negate[v1 ∈ v2]

def
= v1 /∈ v2,

Negate[(f)] def
= (Negate[f]), Negate[¬(f)] def

= f,
Negate[∀v(f)] def

= ∃v Negate(f), Negate[∃v(f)] def
= ∀v Negate(f),

Negate[f1 ∧ ... ∧ fn]
def
= Negate[f1] ∨ ... ∨ Negate[fn],

Negate[c1 ∨ ... ∨ cn]
def
= Negate[c1] ∧ ... ∧ Negate[cn].

Lemma 2.17 (“Negate” lemma). For all f ∈ Form(L),

¬(f) ≡ Negate(f)

by pure logic alone.
Metadefinition 2.18 (Expansion of the reach of a quantifier). Let ⊙ be
one of {∧,∨}, let fi be formulas, 1 ≤ i ≤ n, let j ∈ N such that 1 ≤ j ≤ n,
and assume that fj = ∃vf′j. If f′j is of the form

g1 ⊙ ...⊙ gm, (6)

and v /∈ Free(fi) for all i ̸= j, then ExpandExists[f1 ⊙ ...⊙ fj ⊙ ...⊙ fn, j] is
defined as

∃v(f1 ⊙ ...⊙ fj−1 ⊙ g1 ⊙ ...⊙ gm ⊙ fj+1 ⊙ ...⊙ fn);

if f′j is not of the form (6) and v /∈ Free(fi) for all i ̸= j, then

ExpandExists[f1 ⊙ ...⊙ fj ⊙ ...⊙ fn, j] def
= ∃v(f1 ⊙ ...⊙ f′j ⊙ ...⊙ fn);

in all other cases, ExpandExists is undefined.
Similarly, if fj = ∀vf′j, then if f′j is of the form (6) and v /∈ Free(fi) for

all i ̸= j, then

ExpandForall[f1 ⊙ ...⊙ fj ⊙ ...⊙ fn, j] def
=

∀v(f1 ⊙ ...⊙ fj−1 ⊙ g1 ⊙ ...⊙ gm ⊙ fj+1 ⊙ ...⊙ fn);

if f′j is not of the form (6) and v /∈ Free(fi) for all i ̸= j, then

ExpandForall[f1 ⊙ ...⊙ fj ⊙ ...⊙ fn, j] def
= ∀v(f1 ⊙ ...⊙ f′j ⊙ ...⊙ fn);

in all other cases, ExpandForall is undefined.

12

The reason to distiguish two cases in the definitions above is to elimi-
nate redundant parentheses in the results of the metaoperations.
Lemma 2.19 (“ExpandForall” or “ExpandExists” lemma). Let f ∈ Form(L)
and i ∈ N. In all cases where ExpandExists[f, i] is defined,

f ≡ ExpandExists[f, i]

by pure logic alone. Similarly, in all cases where ExpandForall[f, i] is de-
fined,

f ≡ ExpandForall[f, i]
by pure logic alone.
Metadefinition 2.20 (Moving an existential quantifier to the beginning
of a formula). Let f be of the form

(∃a1 ∈ b1)...(∃an ∈ bn)∃cg.

If c ̸= ai, bi for all 1 ≤ i ≤ n, then

MoveUp[f, n + 1]
def
= ∃c(∃a1 ∈ b1)...(∃an ∈ bn)∃g;

in all other cases, MoveUp is undefined.
Lemma 2.21 (”MoveUp” lemma). Let f ∈ Form(L) and n ∈ N. In all
cases where MoveUp[f, n] is defined,

f ≡ MoveUp[f, n]

by pure logic alone.
Lemma 2.22 (Negation and bounded quantifiers). For all a, b ∈ Var(L)
and all f ∈ Form(L),

(a) ¬[(∀a ∈ b)f] ≡ (∃a ∈ b)(¬f), and
(b) ¬[(∃a ∈ b)f] ≡ (∀a ∈ b)(¬f)

by pure logic.
Lemma 2.23 (Introduction of spurious quantifiers). If f ∈ Form(L) and
v ∈ Var(L) \ Free[f], then

(a) f ≡ ∀vf, and
(b) f ≡ ∃vf

by pure logic.
Lemma 2.24. Let a, a1, a2 ∈ Var(L), and let f ∈ Form(L). Then,

∃a1∃a2(a1 ∈ a ∧ a2 ∈ a ∧ f) ≡ (∃a1 ∈ a)(∃a2 ∈ a)f.

Proof. Apply definition 2.6 and the MoveUp lemma.

Metadefinition 2.25. (a)

Particularize[∃af(a, b⃗); ∀ag(a, b⃗)] def
= ∃a(f(a, b⃗) ∧ g(a, b⃗)).

(b) Let n be an integer ≥ 2, let a⃗ be a sequence of n variables of L, let
z⃗ ∈ Var(L), and let f(⃗a, b⃗), g(⃗a, b⃗) ∈ Form(L). Then,

Particularizen[∃a1...∃anf(⃗a, b⃗);∀a1...∀ang(⃗a, b⃗)] def
=

∃a1...∃an(f(⃗a, b⃗) ∧ g(⃗a, b⃗)).

13

Lemma 2.26 (The “Particularize” lemma). Let a, b⃗ ∈ Var(L), and let
f(a, b⃗), g(a, b⃗) ∈ Form(L). Then

∃af(a, b⃗) ∧ ∀ag(a, b⃗) → Particularize[∃af(a, b⃗); ∀ag(a, b⃗)].

The case with n variables is an immediate consequence.

A set a is transitive iff every element of a is a subset of a, that is, if
(∀b ∈ a)(∀c ∈ b)(c ∈ a).
Metadefinition 2.27 (Transitive set).

Tran[a; b, c] def
= (∀b ∈ a)(∀c ∈ b)(c ∈ a).

14

3 Denoting complexities
Metadefinition 3.1. A formula is ∆0 (or Σ0, or Π0), if all its quantifiers
are bounded. If φ(x1, ...xk, z⃗) is a Πn formula, we say that

∃x1...∃xkφ(x1, ...xk, z⃗)

is a Σn+1 formula. Similarly, if φ(x1, ...xk, z⃗) is a Σn formula, we say
that

∀x1...∀xkφ(x1, ...xk, z⃗)
is a Πn+1 formula.
Metadefinition 3.2. Let φ ∈ ∆0. Then |φ| is the complexity of φ,
defined recursively as follows:

a) If φ is atomic, then |φ| = ·.
b) If φ is ¬ψ, then |φ| = ¬|ψ|; ¬· simplifies to ·.
c) If φ is ψ1 ∧ ...∧ψn, then |φ| = |ψ1| ∧ ...∧ |ψn|; if φ is ψ1 ∨ ...∨ψn,

then |φ| = |ψ1| ∨ ... ∨ |ψn|; · ∧ · simplifies to ·, as does · ∨ ·.
d) |(∃v ∈ s)φ| = ∃(|φ|), and |(∀v ∈ s)φ = ∀(|φ|); parentheses are

omitted where not strictly necessary; strings of identical quantifiers are
represented with subindex notation, i.e., ∃3 = ∃∃∃, and ∀2 = ∀∀, etc.;
∀n(·) simplifies to ∀n, and ∃n(·) simplifies to ∃n.

Let C be the complexity of φ. Sometimes we will write φ ∈ C to
express that φ is of complexity C, enclosing φ between quotes to improve
readability if necessary.
Examples

1) |x = y| = ·; |x ∈ y| = ·.
2) |x ∈ y ∨ y ∈ x| = |x ∈ y| ∨ |y ∈ x| = · ∨ · = ·.
3) |(∀y ∈ x)(∀z ∈ y)(z ∈ x)| = ∀2(·) = ∀2.
4) “(∀y ∈ x)(∀z ∈ y)(z ∈ x)” ∈ ∀2.

Metadefinition 3.3. If a formula φ is Σn (Πn), n > 0, and its ∆0 part
has complexity c, we will say that φ is Σn(c) (Πn(c)).
Example. Let φ be

∃x1∃x2∀x3(x1 ∈ a ∨ (∀y ∈ x2)(∀z ∈ x3)(y ∈ z ∨ z ∈ y)).

Clearly, φ is a Σ2 formula; the ∆0 part is

x1 ∈ a ∨ (∀y ∈ x2)(∀z ∈ x3)(y ∈ z ∨ z ∈ y),

which is · ∨ ∀2. Therefore, φ is a Σ2(· ∨ ∀2) formula, or φ ∈ Σ2(· ∨ ∀2).

15

4 Set Theory: the first axioms
We choose as our axioms a variation of Kripke-Platek set theory with-

out infinity.
Whenever we have to state an axiom schema, we avoid making compro-

mises, and parameterize the axiom schema in a class of formulas. We thus
speak of Γ-Foundation, where Γ ⊆ Fm(L); examples are “Π1-Foundation”
and “(∀∧(·∨∃))-Separation”. This will permit us to postpone the election
of the classes of formulas over which our axioms will be defined, while at
the same time allowing us to build out the theory step by step, by picking
only the axioms that are “absolutely necessary” for our actual proofs (for
different proofs we would probably have a different set of axioms).

Notice that, in the context of the fine-structure analysis of a proof, the
class Γ above will be finite, i.e., we will only need a finite number φ1, ..., φn

of Separation (Foundation, etc.) axioms, that is Γ = {φ1, ..., φn}.

4.1 “Elegant” axioms vs. “expressive” axioms
It is usual to express axioms of set theory in weak forms that are

thought to be more elegant than stronger corresponding forms, and then
present those stronger forms as theorems. For example, the axiom of Pair
would be presented as

∀x ∀y ∃z (x ∈ z ∧ y ∈ z); (7)

this is in fact the option taken in Kunen [2], p. 12. Such an axiom
guarantees that, given two sets x and y, there exists a set z that has x
and y amongst its elements; it does not give us automatically a set that
has as its only elements x and y. That is, the set z guaranteed to exist
by the axiom might be “too big”. The usual way of reasoning is to prove
a short lemma using ∆0-separation to separate a subset of z such that
(∀w ∈ z)(w = x ∨ w = y) and extensionality to prove that such set is
unique. From then on, everybody proceeds as if the real axiom were

∀x ∀y ∃!z ∀w[w ∈ z ↔ (w = x ∨ w = y)]; (8)

after all, the lemma is easily demonstrated.
But if the axiom is really (7), then every use of an unordered pair in

a proof is assuming the use of three axioms: Pair, a form of Separation,
and Extensionality; and, clearly, this is not what we desired: we wanted
to have a Pair axiom that allowed us to use pairs. The use of a form of
Separation is specially inconvenient, because it expands unnecessarily the
list of used axioms.

What is going on is very simple: by postulating the aparently simpler
forms of our axioms and relegating the intuitive forms of the axioms to
apparently trivial lemmas, we are contaminating forever all later proofs
(that is, almost all set-theoretical proofs) with axioms that should not
be there. The cleaner forms of the axioms are in fact dirtier, and what
was supposed to make things simpler in fact makes things much more
complicated. To express it in another way: nothing makes an axiom like
(7) more elegant than (8), except accepted practice, and the fact that
much respected set theorists, like Kunen [2], seem to prefer (7) to (8).3

3In fact, Kunen states that he has chosen the axioms so that they will be easy to check
later, for example when building L, or forcing extensions.

16

In this context, it is illuminating to realize that Devlin [1], who is con-
cerned, as we are, with questions of complexity, uses always the reputedly
“non-elegant” forms of the axioms.

4.2 The Empty Set Axiom

∃!x ∀y (y /∈ x). (Ept)
The unique empty set, guaranteed to exist by axiom (Ept), will be

denoted, as usual, by “∅”.

4.3 The Extensionality Axiom

∀a ∀b [∀x (x ∈ a↔ x ∈ b) → (a = b)]. (Ext)

4.4 The Foundation Axiom
Metadefinition 4.1 (The founding metaoperation). Let φ(x, z⃗) ∈ Form(L),
and y ∈ Var(L) \ Free[φ(x, z⃗)]. Then

Found[∃xφ(x, z⃗), y] def
= ∃x[φ(x, z⃗) ∧ (∀y ∈ x)(¬φ(y, z⃗))].

In all other cases, Found is undefined.
Metadefinition 4.2 (Foundation formulas). Let φ(x, z⃗) ∈ Form(L), and
let y ∈ Var(L) \ Free[φ(x, z⃗)]. Then

AxFnd[∃xφ(x, z⃗), y]

is the formula

∀z⃗ (∃x φ(x, z⃗) → Found[∃xφ(x, z⃗), y]). (Fnd)

In all other cases, AxFnd is undefined.
Axiom Schema 4.3 (Foundation). Let Γ ⊆ Form(L). Γ-Foundation
is the axiom schema AxFnd[∃xφ(x, z⃗), y], where φ(x, z⃗) ∈ Γ and y ∈
Var(L) \ Free[φ(x, z⃗)].

When Γ = Form(L) we will speak of “Full Foundation” or, more simply,
“Foundation”.
Remark 4.4 (∈-Induction Theorem). The contrapositive of

AxFnd[∃x¬φ(x), y]

is
∀x[((∀y ∈ x)φ(y)) → φ(x)] → ∀x φ(x),

called ∈-induction on φ.

17

5 Enumerations and quantifiers
5.1 The Pairing Axiom

∀x ∀y ∃!z ∀w [w ∈ z ↔ (w = x ∨ w = y)]. (Pai)
Definition 5.1. Let x, y be sets. The unique set z which contains as its
only elements x and y, guaranteed to exist by the Pairing Axiom, is called
the (unordered) pair with elements x and y, and is denoted {x, y}. In
the special case where x = y, {x, y} has only one element, namely x = y,
and then {x, y} = {x} = {y} is called the singleton of x and is denoted
by {x}.

5.2 The Union Axiom

∀x∃!y∀z[z ∈ y ↔ (∃u ∈ x)(z ∈ u)] (Uni)
Definition 5.2. Given a set x, the set of all elements of all elements of
x, called the union of x, and guaranteed to exist by the Union axiom, is
denoted by

∪
x.

5.3 Finite sets
Given three elements x, y and z, we can form {x, y} and {z} by Pairing,

{{x, y}, {z}} again by Pairing, and
∪
{{x, y}, {z}} by Union. This set

is normally denoted by {x, y, z}, since it is trivially seen that its only
elements are x, y, and z. A similar operation can be effected for sets of n
elements, n ≥ 3, i.e. to form {x1, ..., xn} for any n ∈ N.

It is interesting to notice that forming sets of more that two elements
requires the use of the Union axiom, while forming sets of two elements
does not. This is clearly an annoying assimetry, which could be overcome
by choosing a stronger axiom that allowed forming new sets from any
given (syntactically) finite collection of sets.

How can one express in the pure language of set theory that a set is
finite? A finite set f = {x1, x2, ..., xn} can be completely described by the
∆0(∃n∀) formula

(∃x1 ∈ f)(∃x2 ∈ f)...(∃xn ∈ f)(∀e ∈ f)
(e = x1 ∨ e = x2 ∨ ... ∨ e = xn).

(9)

This is in itself uninteresting; but when we want to assert a property of
the elements of f , two cases present themselves: in the first case (e.g.,
when n is small and the rôles of the xi’s are different), we may want to
use a property of the form φ(f, x⃗, z⃗) as in

(∃x1 ∈ f)(∃x2 ∈ f)...(∃xn ∈ f)[φ(f, x⃗, z⃗)∧
(∀e ∈ f)(e = x1 ∨ e = x2 ∨ ... ∨ e = xn)];

(10)

if, on the contrary, we need to express properties which are common to
all of the elements of f , we will write

(∃x1 ∈ f)(∃x2 ∈ f)...(∃xn ∈ f)(∀e ∈ f)
[φ(f, e, x⃗, z⃗) ∧ (e = x1 ∨ e = x2 ∨ ... ∨ e = xn)].

(11)

The main difference between (10) and (11) is the placement of φ: in the
first case, if φ is Σ1 then (10) can be transformed into a Σ1 formula by

18

an application of MoveUp after ExpandExists; in the second case we will
need to use Collection first (after ExpandExists).
Metadefinition 5.3 (Enumerations). Let f, e, z⃗, x⃗ = x1, ..., xn be pair-
wise different variables. Then,

(a) Enum[φ(f, x⃗, z⃗), f, e, x⃗] is the formula (10), and
(b) Enum[φ(f, e, x⃗, z⃗), f, e, x⃗] is the formula (11).

Example 5.4. a) Enum[x = x, f, e, x, y] “says” that f is an (unordered)
pair with elements x and y, i.e., f = {x, y}.

b) Enum[x ∩ y = ∅, f, e, x, y] “says” that f is an (unordered) pair of
disjoint elements.

c) Enum[Tran[e], f, e, x, y, z] “says” that f is a set with at most three
elements which are all transitive.

5.4 Collapsing quantifiers
For our purposes, a fundamental use of Enum will be to collapse ex-

istential quantifiers (for example, to help to reduce the complexity of a
formula). It is clear that if we have

∃x1∃x2φ(x1, x2, z⃗)

then we can find a pair x = {x1, x2} such that

∃xEnum[φ(x1, x2, z⃗), x, e, x1, x2],

and viceversa; the same is true when dealing with n variables. As we will
use this operation quite frequently, we introduce a definition for it:
Metadefinition 5.5 (The collapsing operation). Let n ≥ 2 be an integer,
let x⃗ be a sequence of n variables of L, let φ(x⃗, z⃗) ∈ Form(L), and let
e, y ∈ Var(L) be new variables. Then

Collapsen[∃x1...∃xnφ(x⃗, z⃗), y; e]
def
= ∃y Enum[φ(x⃗, z⃗), y, e, x⃗].

The subindex n can be dropped when it is clear from the context.
The next theorem proves that we can collapse existential quantifiers

at cost almost zero (i.e., by using only Pairing, and, if n > 2, Union).
Theorem Schema 5.6 (Collapsing existentials (Pai,Uni)). Let n ≥ 2 be
an integer, let x⃗ be a sequence of n variables of L, let φ(x⃗, z⃗) ∈ Form(L),
where all the x⃗ and z⃗ are pairwise different, and let y, e be new variables.
Then

∃x1...∃xnφ(x⃗, z⃗) ≡ Collapsen[φ(x⃗, z⃗), y, e]

by Pairing (and, if n > 2, Union).

Proof. We prove the theorem for the case n = 2. From the Pairing Axiom
we derive easily

∀x1∀x2∃y[(x1 ∈ x) ∧ (x2 ∈ x) ∧ (∀e ∈ y)(e = x1 ∨ e = x2)]. (12)

⇒) Assume that
∃x1∃x2φ(x1, x2, z⃗). (13)

Then, by Particularize[(13), (12)],

∃x1∃x2[φ(x1, x2, z⃗) ∧ ∃y[(x1 ∈ x) ∧ (x2 ∈ x) ∧ (∀e ∈ y)(e = x1 ∨ e = x2)]].

19

By ExpandExists,

∃x1∃x2∃y[φ(x1, x2, z⃗) ∧ (x1 ∈ y) ∧ (x2 ∈ y) ∧ (∀e ∈ y)(e = x1 ∨ e = x2)].

By commuting existentials and reordering the conjunction,

∃y∃x1∃x2[(x2 ∈ y) ∧ (x1 ∈ y) ∧ φ(x1, x2, z⃗) ∧ (∀e ∈ y)(e = x1 ∨ e = x2)].

By lemma 2.24,

∃y(∃x1 ∈ y)(∃x2 ∈ y)[φ(x1, x2, z⃗) ∧ (∀e ∈ y)(e = x1 ∨ e = x2)].

By lemma 2.23, φ(x1, x2, z⃗) ↔ ∀eφ(x1, x2, z⃗), and by pure logic, ∀eA ∧
∀eB → ∀e(A ∧B); therefore,

∃y(∃x1 ∈ y)(∃x2 ∈ y)∀e[φ(x1, x2, z⃗) ∧ (e ∈ y → (e = x1 ∨ e = x2)].

Similarly, φ(x1, x2, z⃗) implies e ∈ y → φ(x1, x2, z⃗), and therefore

[φ(x1, x2, z⃗) ∧ (e ∈ y → (e = x1 ∨ e = x2)] →
[(e ∈ y → φ(x1, x2, z⃗)) ∧ (e ∈ y → (e = x1 ∨ e = x2)].

And since

[(e ∈ y → φ(x1, x2, z⃗)) ∧ (e ∈ y → (e = x1 ∨ e = x2)] →
[e ∈ y → (φ(x1, x2, z⃗) ∧ (e = x1 ∨ e = x2)]

we have that

∃y(∃x1 ∈ y)(∃x2 ∈ y)(∀e ∈ y)[φ(x1, x2, z⃗) ∧ (e = x1 ∨ e = x2)].

⇐) The reverse direction is much easier: if

∃y(∃x1 ∈ y)(∃x2 ∈ y)(∀e ∈ y)[φ(x1, x2, z⃗) ∧ (e = x1 ∨ e = x2)]

then clearly

∃y∃x1∃x2(∀e ∈ x)[φ(x1, x2, z⃗) ∧ (e = x1 ∨ e = x2)],

and therefore
∃y∃x1∃x2(∀e ∈ x)φ(x1, x2, z⃗).

And since e and y do not occur free in φ,

∃x1∃x2φ(x1, x2, z⃗).

20

6 Separation and collection
6.1 The Separation Axiom
Metadefinition 6.1 (Separation formulas). Let φ(y, z⃗) ∈ Form(L), and
let a, x ∈ Var(L) such that x /∈ Free[φ(y, z⃗)]. Then

AxSep[φ(y, z⃗), a, x, y] def
= ∀z⃗ ∀a ∃x ∀y (y ∈ x↔ y ∈ a ∧ φ(y, z⃗)). (Sep)

In all other cases AxSep is undefined.
Axiom Schema 6.2 (Separation). Let Γ ⊆ Form(L). Γ-Separation is the
axiom-schema AxSep[φ(y, z⃗), a, x, y] where a, x, y, z⃗ ∈ Var(L), φ(y, z⃗) ∈ Γ,
and x /∈ Free[φ(y, z⃗)].

What the Separation axiom expresses is that, given a set a and a
property φ(z) of the elements of a, we can “separate” another set x that
has as its elements exactly those elements of a which have the property
φ. This is usually denoted

x = {y ∈ a : φ(y)}.

6.2 The Collection Axiom
Metadefinition 6.3 (The Collection metaoperation). Let φ(x, y, z⃗) ∈
Form(L), and let a,w ∈ Var(L) such that a ̸= w and w /∈ Free[φ(x, y, z⃗)].
Then

Collect[(∀x ∈ a)∃yφ(x, y, z⃗)] def
= ∃w(∀x ∈ a)(∃y ∈ w)φ(x, y, z⃗).

In all other cases, Collect is undefined.
Metadefinition 6.4 (Collection formulas). Let φ(x, y, z⃗) ∈ Form(L), and
a,w ∈ Var(L) such that a ̸= w and w /∈ Free[φ(x, y, z⃗)]. Then

AxColl[(∀x ∈ a)∃yφ(x, y, z⃗), w]

is the formula

(∀x ∈ a)∃yφ(x, y, z⃗) → Collect[(∀x ∈ a)∃yφ(x, y, z⃗), w]. (Coll)

In all other cases, AxColl is undefined.
Axiom Schema 6.5 (Collection). Let Γ ⊆ Form(L). Γ-Collection is the
axiom schema AxColl[(∀x ∈ a)∃yφ(x, y, z⃗), w], for all φ(x, y, z⃗) ∈ Γ and
all a,w ∈ Var(L) such that a ̸= w and w /∈ Free[φ(x, y, z⃗)].

When Γ = Form(L) we will speak of “Full Collection” or, more simply,
“Collection”.
Theorem Schema 6.6 (Collection equivalence (Γ-Coll)). Let Γ ⊆ Form(L).
For each φ(x, y, z⃗) ∈ Γ and all a,w ∈ Var(L) such that a ̸= w and
w /∈ Free[φ(x, y, z⃗)],

(∀x ∈ a)∃yφ(x, y, z⃗) ≡ Collect[(∀x ∈ a)∃yφ(x, y, z⃗), w]

by AxColl[(∀x ∈ a)∃yφ(x, y, z⃗), w].

Proof. One direction is Γ-Collection, and the other is immediate.

21

6.3 Strengthening Collection
Theorem Schema 6.7 (Pai,Uni). Let φ(x, y, z⃗) ∈ Form(L) be of the
form ∃vφ0(v, x, y, z⃗), and let u ∈ Var(L) \ Free[φ(x, y, z⃗)]. For any new
variables r, w and w′,

(∀x ∈ a)∃yφ(x, y, z⃗) ≡ ∃r [(∀x ∈ a)(∃y ∈ r)φ(x, y, z⃗)
∧ (∀y ∈ r)(∃x ∈ a)φ(x, y, z⃗)
]

by
AxColl[(∀x ∈ a)∃uEnum[φ0(v, x, y, z⃗), u, e, y, v], w], (14)

and
AxSep[(∃x ∈ a)(∃v ∈ w′)φ0(v, x, y, z⃗), w

′, r, y]. (15)

Proof. One direction is immediate. To prove the other direction, assume
that

(∀x ∈ a)∃yφ(x, y, z⃗),
that is,

(∀x ∈ a)∃y∃vφ0(v, x, y, z⃗),

If u = {y, v}, then clearly

(∀x ∈ a)∃u(∃y ∈ u)(∃v ∈ u)(φ0(v, x, y, z⃗) ∧ (∀e ∈ u)(e = y ∨ e = v)),

i.e.,
(∀x ∈ a)∃uEnum[φ0(v, x, y, z⃗), u, e, y, v].

By (14), there exists a set w such that

(∀x ∈ a)(∃u ∈ w)(∃y ∈ u)(∃v ∈ u)φ0(v, x, y, z⃗). (16)

Let w′ =
∪
w, which exists by Union, and consider

r = {y ∈ w′ : (∃x ∈ a)(∃v ∈ w′)φ0(v, x, y, z⃗)}, (17)

which exists by (15). Since

(∃v ∈ w′)φ0(v, x, y, z⃗) → ∃vφ0(v, x, y, z⃗),

i.e.,
(∃v ∈ w′)φ0(v, x, y, z⃗) → φ(x, y, z⃗),

clearly from (17) we get

(∀y ∈ r)(∃x ∈ a)φ(x, y, z⃗);

on the other hand, (16) implies

(∀x ∈ a)(∃y ∈ w′)(∃v ∈ w′)φ0(v, x, y, z⃗),

hence
(∀x ∈ a)(∃y ∈ w′)φ(x, y, z⃗),

and, by (17),
(∀x ∈ a)(∃y ∈ r)φ(x, y, z⃗).

Remark 6.8. If in the proof of theorem 6.7 we drop the assumption of
the Separation axiom (15), while keeping the assumption of the Collection
axiom (14), we can still prove a strengthtened form of Collection:

(∀x ∈ a)∃yφ(x, y, z⃗) → ∃r(∀x ∈ a)(∃y ∈ r)φ(x, y, z⃗).

22

7 Tuples
7.1 Creating tuples

If we are given two sets x and y, saying that there exists a set p = {x, y}
is to say that a set p exists such that:

(x ∈ p ∧ y ∈ p ∧ (∀e ∈ p)(e = x ∨ e = y)).

If we want to express a property of x, y and p, we write

x ∈ p ∧ y ∈ p ∧ φ(x, y, p) ∧ (∀e ∈ p)(e = x ∨ e = y),

which is Σ1 in case φ ∈ Σ1 by ExpandExists; if we need to quantify over
all e ∈ p, then we write

x ∈ p ∧ y ∈ p ∧ (∀e ∈ p)((e = x ∨ e = y) ∧ φ(x, y, p, e)),

which is Σ1 when φ ∈ Σ1 with n unbounded existential quantifiers, but
we need (Strengthened) Collection to prove it for n > 0 (n > 1).
Metadefinition 7.1 (Pairing two sets). Let x, y, p, e, z⃗ be pairwise dif-
ferent variables. Then,

(a) If φ(x, y, p, z⃗) ∈ Form(L), then

Pair[φ(x, y, p, z⃗), x, y, p; e]
is the formula

x ∈ p ∧ y ∈ p ∧ φ(x, y, p, z⃗) ∧ (∀e ∈ p)(e = x ∨ e = y).

(b) If φ(x, y, p, e, z⃗) ∈ Form(L), then

Pair[φ(x, y, p, e, z⃗), x, y, p, e]
is the formula

x ∈ p ∧ y ∈ p ∧ (∀e ∈ p)((e = x ∨ e = y) ∧ φ(x, y, p, e, z⃗).

Notice that the only difference between cases (a) and (b) above radi-
cates in the fact that, in case (b), e ∈ Free(φ).
Lemma 7.2 (AxColl). Let φ(x, y, p, e, z⃗) ∈ Σ1 be

∃vφ0(v, x, y, p, e, z⃗),

with φ0 ∈ ∆0, and let v′ be a new variable. Then there exists a formula

PairΣ1 [φ(x, y, p, e, z⃗), v
′, x, y, p, e,] ∈ Σ1(· ∧ ∀∃(· ∧ |φ0|))

such that

Pair[φ(x, y, p, e, z⃗), x, y, p, e,] ≡ PairΣ1 [φ(x, y, p, e, z⃗), v
′, x, y, p, e,]

by AxColl[(∀e ∈ p)ExpandExists[(e = x ∨ e = y) ∧ ∃vφ0(v, x, y, p, e, z⃗)], v
′].

Proof. Pick a new variable v′, and consider

PairΣ1 [φ(x, y, p, e, z⃗), v
′, x, y, p, e,]

def
=

ExpandExists[x ∈ p ∧ y ∈ p∧
Collect[v′, (∀e ∈ p)

ExpandExists[(e = x ∨ e = y) ∧ ∃vφ0(v, x, y, p, e, z⃗)]
]

].

Recall from the definition of ExpandExists that if φ0 is a conjunction, then
outer parenthesis are automatically removed.

23

7.2 Ordered pairs
7.2.1 Definition
Definition 7.3 (Kuratowski). Given two sets a and b, the ordered pair
⟨a, b⟩ is

⟨a, b⟩ = {{a}, {a, b}}.
If ⟨a, b⟩ = ⟨c, d⟩, then a = c and b = d.

7.2.2 Complexity of “being an ordered pair”
Let t = ⟨x, y⟩, and assume that t = {p1, p2}, where p1 = {x} and

p2 = {x, y}. To express this fact in L = {∈,=} alone, we have to ensure
that there are two elements p1 and p2 in t, that any element e of t is either
p1 or p2, that x ∈ p1 and x, y ∈ p2, and that any element e1 of p1 is x,
and that any element e2 of p2 is either x or y. If, additionally, we want to
express some fact φ involving t, x, y, and possibly other variables z⃗, we
are lead naturally to the following definition:
Metadefinition 7.4. Let φ(t, x, y, z⃗) ∈ Form(L), and let p and e be
stems. Then

Tuple[φ(t, x, y, z⃗), t, x, y; p, e] def
= (∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)

(φ(t, x, y, z⃗)∧
(∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)
((e = p1 ∨ e = p2) ∧ (e1 = x)
∧(e2 = x ∨ e2 = y) ∧ (x ∈ p2))).

Theorem Schema 7.5 (Pai). If φ(p, x, y, z⃗) ∈ ∆0, then

Tuple[φ(t, x, y, z⃗), t, x, y; p, e] ∈ ∆0(∃4(|φ| ∧ ∀3));

if φ(t, x, y, z⃗) ∈ Σ1 is ∃vφ0(v, t, x, y, z⃗), with φ0(v, t, x, y, z⃗) ∈ ∆0, then
there is a formula

TupleΣ1
[φ(t, x, y, z⃗), t, x, y; p, e] ∈ Σ1(∃4(|φ0| ∧ ∀3))

such that

Tuple[φ(t, x, y, z⃗), t, x, y; p, e] ≡ TupleΣ1
[φ(t, x, y, z⃗), t, x, y; p, e]

by Pairing.

Proof. The ∆0 case is immediate; for the Σ1 case, consider

TupleΣ1
[φ(t, x, y, z⃗), t, x, y; p, e]

def
=

MoveUp5[
(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)
ExpandExists[∃vφ0(v, t, x, y, z⃗)∧

(∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)
(e = p1 ∨ e = p2) ∧ (e1 = x)
∧(e2 = x ∨ e2 = y) ∧ (x ∈ p2))]

].

(18)

Recall from the definition of ExpandExists that if φ0(v, t, x, y, z⃗) is a con-
junction, then its outer parenthesis are removed as a further optimiza-
tion.

24

8 Classes, relations and functions
8.1 Classes
Definition 8.1 (Classes). Let C(x, y⃗) be a formula of L with all free
variables shown. We will say that C defines a class (with parameters
y⃗). Given a tuple of parameters a⃗, we will speak of the class C(⃗a) (or
Ca⃗) in the following sense: x ∈ Ca⃗ will be a shorthand for C(x, a⃗), and
x /∈ Ca⃗ will be a shorthand for ¬C(x, a⃗). Similarly, given two classes Ca⃗

and Db⃗, we write:

{x : C(x, a⃗)} as equivalent to C(x, a⃗);
Ca⃗ ⊆ Db⃗ as a shorthand for ∀x(C(x, a⃗→ D(x, b⃗));
Ca⃗ ∪ Db⃗ as a shorthand for {x : C(x, a⃗) ∨D(x, b⃗)};
Ca⃗ ∩ Db⃗ as a shorthand for {x : C(x, a⃗) ∧D(x, b⃗)};
Ca⃗ \ Db⃗ as a shorthand for {x : C(x, a⃗) ∧ ¬D(x, b⃗)}.

8.2 Class functions
Definition 8.2 (Class functions). Let T be a L-theory, and let F (x, z⃗, y)
be a formula with all free variables shown. We will say that F defines a
class function (in the theory T) iff

T ⊢ ∀z⃗ ∀x∃!yF (x, z⃗, y),

that is,
T ⊢ ∀z⃗ ∀x∃y

[
F (x, z⃗, y) ∧ ∀w(F (x, z⃗, w) → y = w)

]
.

Functional notation: sometimes we will write y = F(x, z⃗) instead of
F (x, z⃗, y), and y = Fz⃗(x) instead of F(x, z⃗, y).

8.3 Relations
Metadefinition 8.3 (Relations). Let φ(r, a, b, z⃗) ∈ Form(L), and let p
and e be stems. Then

Rel[φ(r, x, y, z⃗), r, x, y; p, e] def
= (∀t ∈ r)Tuple[φ(r, x, y, z⃗), t, x, y; p, e].

Lemma 8.4.
Rel[φ(r, x, y, z⃗), r, x, y; p, e] ∈ ∀∃4(|φ| ∧ ∀3).

In many cases we will need to handle simultaneously several elements
(i.e., several ordered pairs) of a relation. For example, when defining the
concept of “being a function” f will be a function iff

(⟨x, y⟩, ⟨z, w⟩ ∈ f ∧ x = z) → y = w.

Applying definition 8.3 directly, “f is a function” would be
Rel[Rel[x = z → y = w, f, z, w], f, x, y],

which is ∀∃4∀4∃4∀3; however, a simpler definition exists:
(∀p1 ∈ f)(∀p2 ∈ f)
(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈ p2)
(∃x1 ∈ p11)(∃y1 ∈ p12)(∃x2 ∈ p21)(∃y2 ∈ p22)
(∀e1 ∈ p1)(∀e2 ∈ p2)(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)
(x1 ∈ p12 ∧ x2 ∈ p22 ∧ (e1 = p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e1 = p22)∧
e11 = x1 ∧ e21 = x2 ∧ (e12 = x1 ∨ e12 = y1) ∧ (e22 = x2 ∨ e22 = y2)∧
(x1 = x2 → y1 = y2)),

25

which is ∀2∃8∀6. In fact, only the last line expresses that f is a function;
the rest of the formula is absolutely general:
Metadefinition 8.5. Let n be a positive natural number. Then

Tuplesn[φ(r, p⃗, e⃗, x⃗, y⃗, z⃗), r, p, e, x, y]

is defined as

(∀p1 ∈ r)...(∀pn ∈ r)
(∃p1

1 ∈ p1)(∃p1
2 ∈ p1)...(∃pn

1 ∈ pn)(∃pn
2 ∈ pn)

(∃x1 ∈ p1
1)(∃y1 ∈ p1

2)...(∃xn ∈ pn
1)(∃yn ∈ pn

2)
(∀e1 ∈ p1)...(∀en ∈ pn)
(∀e1

1 ∈ p1
1)(∀e1

2 ∈ p1
2)...(∀en

1 ∈ pn
1)(∀en

2 ∈ pn
2)

(
∧

1≤i≤n(xi ∈ pi
2 ∧ (ei = pi

1 ∨ ei = pi
2) ∧ ei

1 = xi ∧ (ei
2 = xi ∨ ei

2 = yi))

∧φ(r, p⃗, x⃗, y⃗, z⃗))

Clearly, for each positive n,

Tuplesn[φ(r, p⃗, e⃗, x⃗, y⃗, z⃗), r, p, e, x, y] ∈ ∀n∃4n∀3n(· ∧ |φ(r, p⃗, x⃗, y⃗, z⃗)|).

Notice that p, e, x and y are stems.

8.4 Functions
Definition 8.6. We say that a relation f is a function, and write Fun(f),
when ⟨x, y⟩ ∈ f and ⟨x, z⟩ ∈ f imply y = z.
Metadefinition 8.7 (Functions).

Fun[φ(f, p⃗, x⃗, y⃗, z⃗), f ; p, e]

is defined as

Tuples2[x1 = x2 → y1 = y2 ∧ φ(f, p⃗, x⃗, y⃗, z⃗), f, p, e, x, y]

Metadefinition 8.8 (Functions f1 and f2 differ at x, i.e., f1(x) ̸= f2(x).).

FunDiff[f1, f2, x; p, e, y] def
= (∃p1 ∈ f1)(∃p2 ∈ f2)

(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈ p2)
(∃y1 ∈ p12)(∃y2 ∈ p22)
(∀e1 ∈ p1)(∀e2 ∈ p2)
(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)
[(e1 = p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e2 = p22)∧
(e11 = x) ∧ (e21 = x)∧
(e12 = x ∨ e12 = y1) ∧ (e22 = x ∨ e22 = y2)∧
(y1 ̸= y2)].

Metadefinition 8.9 (Function f has value y at x, i.e., f(x) = y).

FunVal[f, x, y; p, e] def
= (∃p ∈ f)(∃p1 ∈ p)(∃p2 ∈ p)

(∀e ∈ p)(∀e1 ∈ p1)(∀e2 ∈ p2)
((e = p1 ∨ e = p2) ∧ (e1 = x) ∧ (e2 = x ∨ e2 = y))

Clearly, FunVal[f, x, y; p, e] ∈ ∆0(∃3∀3).

26

Metadefinition 8.10 (x ∈ dom f). If f is a function, then saying that
x ∈ dom f means that there exists a pair p ∈ f such that x is its first
component. But in the Kuratowski definition of ordered pairs, this means
that x is an element of every element e of p:

InDomain[x, f ; p, e] def
= (∃p ∈ f)(∀e ∈ p)(x ∈ e).

It is immediate that InDomain[x, f ; p, e] ∈ ∆0(∃∀).
Definition 8.11 (Restriction of a function). Let f be a function, and a
a set. The set

f ↾ a = {⟨x, y⟩ ∈ f : x ∈ a}
is called the restriction of f to a.

Clearly, if r = f ↾ a then all elements p of r have a first component
p1 ∈ a, and p1 is the first component of an ordered pair p iff p1 belongs
to all the elements e1 of p.
Metadefinition 8.12 (The Restrict metaoperation).

Restrict[f, a, r; p, e] def
= (∀p ∈ f)(∃e ∈ p)(∃p1 ∈ e)(∀e1 ∈ p)

(p1 ∈ e1 ∧ (p ∈ r ↔ p1 ∈ a)).

Clearly,
Restrict[f, a, r; p, e] ∈ ∆0(∀∃2∀).

27

Part II
Transfinite induction and
recursion
9 Transfinite ∈-induction and recursion

Recall from remark 4.4:
Theorem Schema 9.1 (∈-induction). Let φ(x, z⃗) be any formula. Then
for all z⃗,

∀x[((∀y ∈ x)φ(y, z⃗)) → φ(x, z⃗)] → ∀x φ(x, z⃗).
Our goal is to prove the transfinite ∈-recursion theorem for Σ1 (∆0)

class functions. Namely if F (x, z, a⃗, y) is a Σ1 (∆0)class function, we want
to find a Σ1 class function G(x, a⃗, y) such that for all a⃗,

∀x(Ga⃗(x) = Fa⃗(x,Ga⃗ ↾ x)).

The structure of the proof is as follows: we first introduce in 9.2 suitable
functions, which are set approximations to G and are readily seen to be
definable by a Σ1 formula (Theorem 9.3) and pairwise compatible (i.e.,
if σ1 and σ2 are suitable functions and x ∈ dom(σ1) ∩ dom(σ2), then
σ1(x) = σ2(x) [Theorem 9.4]). We next define in 9.5 a class relation Ga⃗

as follows: Ga⃗(x, y) holds iff there exists a suitable function σ such that
y = σ(x), that is, iff we can build a set approximation of G such that
y = Ga⃗(x) (we can speak of a set approximation of G because we just
proved that any two such approximations are compatible). We finally
prove that Ga⃗ has a Σ1 equivalence (Theorem 9.6) and is total (Theorem
9.8).

For the rest of the section we will assume that F (x, z, a⃗, y) is either
∆0, or Σ1 of the form

∃vF0(v, x, z, a⃗, y),

where F0 ∈ ∆0 (if F ∈ Σ1 with more than one unbounded existential
quantifier, apply Collapse first).

9.1 Suitable functions
Definition 9.2 (Suitable functions). A function σ is suitable (for F and
for a set of parameters a⃗), written Sa⃗(σ), iff

Fun(σ) ∧ Tran(dom(σ)) ∧ (∀x ∈ dom(σ))(σ(x) = Fa⃗(x, σ ↾ x)). (19)

Theorem 9.3 (“To be suitable for F” has a Σ1 equivalence if F ∈ ∆0∪Σ1).
If F ∈ ∆0, then there exists a formula Sa⃗

Σ1
(σ) such that

Sa⃗(σ) ≡ Sa⃗
Σ1

(σ) ∈ Σ1(∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9)

by ∆0-Collection; if F is ∃vF0(v, x, z, a⃗, y), with F0 ∈ ∆0, then there exists
a formula Sa⃗

Σ1
(σ) such that

Sa⃗(σ) ≡ Sa⃗
Σ1

(σ) ∈ Σ1(∀3∃12∀9 ∧ ∀∃5(∀3 ∧ ∃2(∀∃2∀ ∧ |F0| ∧ ∀)))

by ∆0-Collection.

28

Proof. Consider the definition of suitable functions. Fun(σ)∧Tran(dom(σ))
can be expressed as follows

Tuples3 [(x1 = x2 → y1 = y2) ∧ ((x1 ∈ x2 ∧ x2 ∈ x3) → x1 ∈ x3)),
σ, p, e, x, y

].
(20)

Following definition 8.5, Fun(σ) ∧ Tran(dom(σ)) is ∆0(∀3∃12∀9). Addi-
tionally, since we can count on σ being a function,

(∀x ∈ dom(σ))(σ(x) = Fa⃗(x, σ ↾ x))

means that every element of σ is a tuple t = ⟨x, y⟩ such that y = Fa⃗(x, σ ↾
x):

(∀t ∈ σ)Tuple[y = Fa⃗(x, σ ↾ x), t, x, y]. (21)
In turn, y = Fa⃗(x, σ ↾ x) is ∃z(z = σ ↾ x ∧ F (x, z, a⃗, y)), so that (21)
becomes

(∀t ∈ σ)Tuple[∃z(Restrict[σ, x, z] ∧ F (x, z, a⃗, y)), t, x, y]. (22)

Recall from definition 8.12 that Restrict[σ, x, z] ∈ ∆0(∀∃2∀).

Case F ∈ ∆0: If F ∈ ∆0, by theorem 7.5 we can interchange Tuple by
TupleΣ1

, hence

TupleΣ1
[∃z(Restrict[σ, x, z] ∧ F (x, z, a⃗, y)), t, x, y]

is a Σ1(∃4(∀∃2∀ ∧ |F | ∧ ∀3)) formula. Pick a new variable v′, apply

Collect[(∀t ∈ σ)
TupleΣ1

[∃z(Restrict[σ, x, z] ∧ F (x, z, a⃗, y)), t, x, y]
v′],

and then ExpandExists to the conjunction with (20).

Case F ∈ Σ1: Clearly, ∃z(Restrict[σ, x, z] ∧ ∃vF0(v, x, z, a⃗, y)) is

∃z∃v(Restrict[σ, x, z] ∧ F0(v, x, z, a⃗, y))

by ExpandExists, and

∃v0Enum[Restrict[σ, x, z] ∧ F0(v, x, z, a⃗, y), v0, e]

(a Σ1(∃2(∀∃2∀∧|F0|∧∀)) formula) by Collapse. Change Tuple by TupleΣ1
,

and then pick a new variable v′, apply

AxColl[(∀t ∈ σ)
Tuple�1 [
∃v0Enum[Restrict[σ, x, z] ∧ F0(v, x, z, a⃗, y), v0, z, v]

t, x, y],
v′],

and then ExpandExists to the conjunction with (20).

Axioms needed: Pairing, and
∆0 case: {∃4(∀∃2∀ ∧ |F | ∧ ∀3)}-Collection.
Σ1 case: {∃4(∃2(∀∃2∀ ∧ |F | ∧ ∀) ∧ ∀3)}-Collection.

29

9.2 Compatibility of suitable functions
Theorem 9.4. Suitable functions are compatible, in the following sense:
fix a⃗, let σ1 and σ2 be such that Sa⃗(σ1)∧Sa⃗(σ2), and pick x ∈ dom(σ1)∩
dom(σ1). Then σ1(x) = σ2(x).

Proof. Abbreviate

Ca⃗(σ1, σ2, x)
def
= Sa⃗

Σ1
(σ1) ∧ Sa⃗

Σ1
(σ2) ∧ x ∈ dom(σ1) ∧ x ∈ dom(σ2).

We want to prove that for all a⃗ all x, and all σ1, σ2,

Ca⃗(σ1, σ2, x) → (σ1(x) = σ2(x)). (23)

Assume, in search of a contradiction, that there exist σ1, σ2, a⃗, x such
that (23) fails, that is,

Ca⃗(σ1, σ2, x) ∧ σ1(x) ̸= σ2(x). (24)

Since σ1(x) ̸= σ2(x) is
FunDiff[σ1, σ2, x],

and we can express Ca⃗(σ1, σ2, x) as

∃sPair[Sa⃗
Σ1

(σ) ∧ InDomain(x, σ), σ1, σ2, s, σ],

(24) is equivalent to

∃sPair[Sa⃗
Σ1

(σ) ∧ InDomain(x, σ), σ1, σ2, s, σ] ∧ FunDiff[σ1, σ2, x]. (25)

Consider now ∃wφ(w, σ1, σ2, x, a⃗) defined as

ExpandExists[
Collapse[
∃sPairΣ1 [

ExpandExists[Sa⃗
Σ1

(σ) ∧ InDomain(x, σ)],
σ1, σ2, s, σ

],
2, w, k

]
∧FunDiff[σ1, σ2, x]

],

which is a Σ1 formula equivalent to (25) with φ ∈ ∆0. We have assumed
that

∃a⃗∃σ1∃σ2∃x∃wφ(w, σ1, σ2, x, a⃗),

which is the same as

∃a⃗∃σ1∃σ2∃w∃xφ(w, σ1, σ2, x, a⃗),

and therefore we can apply

AxFnd[∃xφ(w, σ1, σ2, x, a⃗), y]

to get an x such that

Ca⃗(σ1, σ2, x) ∧ (σ1(x) ̸= σ2(x)),

while for all y ∈ x,

Ca⃗(σ1, σ2, y) → (σ1(y) = σ2(y))].

30

For i = 1, 2, Sa⃗
Σ1

(σi) implies Tran(dom(σi)), hence if x ∈ dom(σi) and
y ∈ x, y ∈ dom(σi), and therefore for all y ∈ x, Ca⃗(σ1, σ2, y) and thus

(∀y ∈ x)(σ1(y) = σ2(y)),

or σ1 ↾ x = σ2 ↾ x. But now

σ1(x) = Fa⃗(x, σ1 ↾ x) = Fa⃗(x, σ2 ↾ x) = σ2(x),

a contradiction.

Axioms used: Since we use Sa⃗
Σ1

, we must carry all axioms of theorem 9.3.
Additionally, PairΣ1 uses Collection (lemma 7.2). Hence, the additional
axioms are:

For the ∆0 case, instances of
{· ∧ ∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀}-Collection, and
{(∃2(· ∧ ∀∃(· ∧ ∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀) ∧ ∀) ∧ ∃8∀6)}-

Foundation

For the Σ1 case, instances of
{· ∧ ∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀}-Collection, and
{(∃2(·∧∀∃(·∧∀∃5(∃2(∀∃2∀∧|F0|∧∀)∧∀3)∧∀3∃12∀9∧∃∀)∧∀)∧∃8∀6)}-

Foundation

9.3 Building G
Definition 9.5. We define G(x, a⃗, y) as follows: Ga⃗(x, y) iff there exists
a function σ that is suitable (for the set of parameters a⃗) and such that
y = σ(x):

G(x, a⃗, y)
def
= ∃σ(Sa⃗

Σ1
(σ) ∧ y = σ(x)).

9.4 G has a Σ1 equivalence
Theorem 9.6. If F ∈ ∆0 or F ∈ Σ1, then there exists a formula
GΣ1(x, a⃗, y) such that G(x, a⃗, y) ≡ GΣ1(x, a⃗, y) ∈ Σ1.

Proof. Sa⃗
Σ1

(σ) ∈ Σ1 by theorem 9.3, and y = σ(x) is FunVal[σ, x, y] ∈
∃3∀3. Hence,

ExpandExists[Sa⃗
Σ1

(σ) ∧ FunVal[σ, x, y]] ∈ Σ1,

and therefore

∃σExpandExists[Sa⃗
Σ1

(σ) ∧ FunVal[σ, x, y]]

has two unbounded existential quantifiers, and we can pick a new variable
v′ so that

GΣ1(x, a⃗, y)
def
= Collapse[∃σ(Sa⃗

Σ1
(σ) ∧ FunVal[σ, x, y]), v′, e] ∈ Σ1.

Axioms used: Apart from minor axioms, the use of Sa⃗
Σ1

implies the use of
the axioms of theorem 9.3.

31

9.5 G is a partial function
Theorem 9.7. Assume that G(x, a⃗, y) and G(x, a⃗, y′); then, y = y′.

Proof. We are assuming that there exist suitable functions σ and σ′ such
that y = σ(x) and y′ = σ′(x), but this implies that y = y′ since all suit-
able functions are compatible (lemma 9.4).

Axioms used: The same as those of lemma 9.4.

Therefore, we can write y = Ga⃗(x), if such an y exists.

9.6 G is total
Theorem 9.8. G is total, i.e.,

∀a⃗∀x∃y(y = Ga⃗(x)).

Proof. Assume otherwise, in search of a contradiction. Then there exist
a⃗, x such that

¬∃y(y = Ga⃗(x)).

By AxFnd[∃x¬∃y(y = Ga⃗(x)), x
′], we can choose x such that

(∀x′ ∈ x)∃y(y = Ga⃗(x
′)),

that is, by definition 9.5,

(∀x′ ∈ x)∃y∃σ(Sa⃗
Σ1

(σ) ∧ y = σ(x′))

(since we have proved in lemma 9.6 that G ≡ GΣ1 ∈ Σ1, a simple appli-
cation of Collapse will show that ∃y(y = Ga⃗(x)) is also Σ1).

Notice that ∃y∃σ(Sa⃗
Σ1

(σ) ∧ y = σ(x′)) → ∃σ(Sa⃗
Σ1

(σ) ∧ x′ ∈ dom(σ)),
hence

(∀x′ ∈ x)∃σ(Sa⃗
Σ1

(σ) ∧ InDomain[x′, σ]).
Since InDomain[x′, σ] ∈ ∆0,

ExpandExists[Sa⃗
Σ1

(σ) ∧ InDomain[x′, σ]] ∈ Σ1,

and we can apply theorem 6.7 to get a set u such that

(∀x′ ∈ x)(∃σ ∈ u)(Sa⃗
Σ1

(σ) ∧ InDomain[x′, σ])

and
(∀σ ∈ u)(∃x′ ∈ x)(Sa⃗

Σ1
(σ) ∧ InDomain[x′, σ]).

We already know (lemma 9.4) that all suitable functions are compati-
ble; hence τ0 =

∪
u, which exists by Union, is a function. Additionally,

dom(τ0) is clearly transitive; hence, Sa⃗(τ0). Let then

τ = τ0 ∪ {⟨x,Fa⃗(x, τ0 ↾ x)⟩},

which exists by Pairing and Union (and because we have assumed that F
is a function). Clearly, Sa⃗(τ); but then

τ(x) = Fa⃗(x, ϱ ↾ x),

and therefore Ga⃗(x, τ(x)), contrary to our choice of a⃗ and x.

32

Axioms used: All previous axioms of this section, plus Foundation and
the axioms needed to apply theorem 6.7:

For the ∆0 case, instances of
{Π1(∀2(∀2(∃∀5(∃∀2∃∨¬(|F |)∨∃3)∨∃3∀12∃9∨∀3∃3∨∃)∨∃))}-Founda-

tion,
{∃2(∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀)}-Separation, and
{∃2((∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀) ∧ ∀}-Collection.

For the Σ1 case, instances of
{Π1(∀2(∀2(∃∀5(∀2(∃∀2∃∨¬(|F0|)∨∃)∨∃3)∨∃3∀12∃9∨∀3∃3∨∃)∨∃))}-

Foundation,
{∃2(∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀)}-Separation, and
{∃2((∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀) ∧ ∀)}-Collection.

9.7 Summary of axioms needed for recursion
9.7.1 ∆0 case
Collection axioms by complexity:

1) ∆0(∃4(∀∃2∀ ∧ |F | ∧ ∀3)).
2) ∆0(· ∧ ∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀).
3) ∆0(∃2((∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀) ∧ ∀).

Separation axiom complexity:

1) ∆0(∃2(∀∃5(∀∃2∀ ∧ |F | ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀)).

Foundation axioms by complexity:

1) ∆0(∃2(· ∧ ∀∃(· ∧ ∀∃5(∀∃2∀ ∧ |F | ∧ ∀3)∧ ∀3∃12∀9 ∧ ∃∀)∧ ∀)∧ ∃8∀6)).
2) Π1(∀2(∀2(∃∀5(∃∀2∃ ∨ ¬(|F |) ∨ ∃3) ∨ ∃3∀12∃9 ∨ ∀3∃3 ∨ ∃) ∨ ∃)).

9.7.2 Σ1 case
Collection axioms by complexity:

1) ∆0(∃4(∃2(∀∃2∀ ∧ |F | ∧ ∀) ∧ ∀3)).
2) ∆0(· ∧ ∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀).
3) ∆0(∃2((∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀) ∧ ∀)).

Separation axiom complexity:

1) ∆0(∃2(∀∃5(∃2(∀∃2∀ ∧ |F0| ∧ ∀) ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀)).

Foundation axioms by complexity

1) ∆0((∃2(· ∧∀∃(· ∧∀∃5(∃2(∀∃2∀∧ |F0| ∧∀)∧∀3)∧∀3∃12∀9∧∃∀)∧∀)∧
∃8∀6)).

2) Π1(∀2(∀2(∃∀5(∀2(∃∀2∃∨¬(|F0|)∨∃)∨∃3)∨∃3∀12∃9∨∀3∃3∨∃)∨∃)).

33

Part III
Appendix
A An example: the transitive closure

Let x be a set. The transitive closure of x, TrCl(x), is intuitively
defined to be

x ∪
∪
x ∪

∪∪
x...,

that is,
TrCl(x) = x ∪

∪
y∈x

TrCl(y),

since

x∪
∪
y∈x

TrCl(y) = x∪
∪
y∈x

{y∪
∪
z∈y

TrCl(z)} = x∪
∪
x∪

∪
y∈x

∪
z∈y

TrCl(z) = ...

To implement this concept as a recursive function, we define

F(x, z) = x ∪
∪

ran z

whenever z is a function (F is undefined otherwise).
The recursion theorem tells us that there exists an unique class func-

tion G such that

G(x) = F(x,G ↾ x) = x ∪
∪

ran(G ↾ x) = x ∪
∪
y∈x

G(y),

and by the unicity of G, G = TrCl.
Now we have to express F in full. Assuming, as we can, that z is a

function, to say that an element e belongs to
∪

ran z can be expressed as
follows:

e ∈
∪

ran z ↔ (∃w ∈ ran z)(e ∈ w);

in turn, ∃w ∈ ran z means that there exists a pair p ∈ z such that w is
its second component, i.e., if p = {p1, p2} = {{r}, {r, w}}, with p1 = {r},
then either p1 = p2, and then w ∈ pw, or p1 ̸= p2, and then w ∈ p2 and
there is some other element r in p2:

(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2)
∧(p1 = p2 ∨ (∃r ∈ p2)(r ̸= w))).

Since p1 is not empty, we can rewrite the above formula as

(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2)
∧(∃r ∈ p2)(p1 = p2 ∨ r ̸= w)),

then as

(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃w ∈ p2)(∀q ∈ p)(∃r ∈ p2)
((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸= w)),

and finally as

(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸= w)),

34

which is ∃5∀. Hence, e ∈
∪

ran z will be

(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸= w) ∧ (e ∈ w)).

Now let F (x, z, y) be ∀e((e ∈ y) ↔ (e ∈ x ∨ e ∈
∪

ran z)), that is, the
conjunction of (∀e ∈ y)(e ∈ x∨e ∈

∪
ran z), which is ∆0, (∀e ∈ x)(e ∈ y),

which is ∆0, and (∀e ∈
∪

ran z)(e ∈ y), which we should convert first to
∆0:

(∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸= r)) → e ∈ y)).

Therefore F (x, z, y) is

(∀e ∈ y)(e ∈ x∨
(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸= w) ∧ (e ∈ w)))

∧(∀e ∈ x)(e ∈ y)
∧(∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸= r)) → e ∈ y)),

(26)

that is, a ∆0(∀(· ∨ ∃5∀) ∧ ∀ ∧ ∀∃5∀) formula.

To prove the Recursion theorem for F (that is, to prove the existence
of the transitive closure) we need to prove that F is indeed a function
(this is immediate by Extensionality), one instance of each:

{∆0(∃4(∀∃2∀ ∧ ∀(· ∨ ∃5∀) ∧ ∀ ∧ ∀∃5∀ ∧ ∀3))}-Collection,
{∆0((·∧∀∃5(∀∃2∀∧∀(·∨∃5∀)∧∀∧∀∃5∀∧∀3)∧∀3∃12∀9∧∃∀))}-Collection,

and
{∆0(∃2((∀∃5(∀∃2∀∧∀(· ∨ ∃5∀)∧∀∧∀∃5∀∧∀3)∧∀3∃12∀9 ∧∃∀)∧∀))}-

Collection;

one instance of

{∆0(∃2(∀∃5(∀∃2∀ ∧ ∀(· ∨ ∃5∀) ∧ ∀ ∧ ∀∃5∀ ∧ ∀3) ∧ ∀3∃12∀9 ∧ ∃∀))}-
Separation, and

one instance of each:

{∆0((∃2(· ∧ ∀∃(· ∧ ∀∃5(∀∃2∀ ∧ ∀(· ∨ ∃5∀) ∧ ∀ ∧ ∀∃5∀ ∧ ∀3) ∧ ∀3∃12∀9 ∧
∃∀) ∧ ∀) ∧ ∃8∀6))}-Foundation, and

{Π1(∀2(∀2(∃∀5(∃∀2∃ ∨ ∃(· ∧ ∀5∃) ∨ ∃ ∨ ∃∀5∃ ∨ ∃3) ∨ ∃3∀12∃9 ∨ ∀3∃3 ∨
∃) ∨ ∃))}-Foundation.

35

B A curiosity: The Π1-foundation axiom
for the transitive closure case

As a curiosity, and as a means to prove our assertion that undoing
defined notions is almost impossible in practice, we list here one single
axiom for the transitive closure case. Recall formula (26): F (x, z, y) is

(∀e ∈ y)(e ∈ x∨
(∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸= w) ∧ (e ∈ w)))

∧(∀e ∈ x)(e ∈ y)
∧(∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)
((q = p1 ∨ q = p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸= r)) → e ∈ y)).

We first must build S(σ), the suitability formula, defined as

(∀t ∈ σ)Tuple[∃z(Restrict[σ, x, z] ∧ F (x, z, y)), t, x, y]
∧Tuples[(x1 = x2 → y1 = y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 → x1 ∈ x3), 3, σ, x, y].

Now Restrict[σ, x, z] is

(∀p ∈ σ)(∃e ∈ p)(∃p1 ∈ e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x)),

so that
Tuple[∃z(Restrict[σ, x, z] ∧ F (x, z, y)), t, x, y]

is (∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)(∃z((∀p ∈ σ)(∃e ∈ p)(∃p1 ∈
e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x)) ∧ (∀e ∈ y)(e ∈ x ∨ (∃p ∈ z)(∃p1 ∈
p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸=
w)∧e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈
p2)(∃e ∈ w)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸= r)) →
e ∈ y))) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1 ∨ e = p2) ∧ e1 = x ∧ (e2 =
x ∨ e2 = y) ∧ x ∈ p2)). Therefore

S(σ)

is (∀t ∈ σ)(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)(∃z((∀p ∈ σ)(∃e ∈
p)(∃p1 ∈ e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x))∧ ((∀e ∈ y)(e ∈ x∨ (∃p ∈
z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2)∧ (p1 =
p2 ∨ r ̸= w)∧ e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈
p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)((q = p1∨q = p2)∧((p1 = p2∨(r ∈ p2∧w ̸=
r)) → e ∈ y)))) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1 ∨ e = p2) ∧ e1 =
x ∧ (e2 = x ∨ e2 = y) ∧ x ∈ p2)) ∧ (∀p1 ∈ σ)(∀p2 ∈ σ)(∀p3 ∈ σ)(∃p11 ∈
p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈ p2)(∃p31 ∈ p3)(∃p32 ∈ p3)(∃x1 ∈ p11)(∃y1 ∈
p12)(∃x2 ∈ p21)(∃y2 ∈ p22)(∃x3 ∈ p31)(∃y3 ∈ p32)(∀e1 ∈ p1)(∀e2 ∈ p2)(∀e3 ∈
p3)(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)(∀e31 ∈ p31)(∀e32 ∈ p32)(x1 ∈
p12 ∧ x2 ∈ p22 ∧ x3 ∈ p32 ∧ (e1 = p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e2 = p22) ∧ (e3 =
p31 ∨ e3 = p32) ∧ e11 = x1 ∧ e21 = x2 ∧ e31 = x3 ∧ (e12 = x1 ∨ e12 = y1) ∧ (e22 =
x2∨e22 = y2)∧ (e32 = x3∨e32 = y3)∧ (x1 = x2 → y1 = y2)∧ (x1 ∈ x2∧x2 ∈
x3 → x1 ∈ x3)).

Remember that G(x, y) is defined by ∃σ(S(σ) ∧ y = σ(x)). But first
we have to bring S(σ) into a Σ1 form, i.e.,

ExpandExists[
Collect[
(∀t ∈ σ)TupleΣ1

[∃z(Restrict[σ, x, z] ∧ F (x, z, y)), t, x, y],
a]∧
Tuples[(x1 = x2 → y1 = y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 → x1 ∈ x3), 3, σ, x, y],

1],

36

that is, ∃a((∀t ∈ σ)(∃z ∈ a)(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)((∀p ∈
σ)(∃e ∈ p)(∃p1 ∈ e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x)) ∧ (∀e ∈ y)(e ∈
x ∨ (∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q =
p2) ∧ (p1 = p2 ∨ r ̸= w) ∧ e ∈ w)) ∧ (∀e ∈ x)(e ∈ y) ∧ (∀p ∈ z)(∃p1 ∈
p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)((q = p1 ∨ q = p2)∧ ((p1 =
p2 ∨ (r ∈ p2 ∧ w ̸= r)) → e ∈ y)) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e =
p1 ∨ e = p2) ∧ e1 = x ∧ (e2 = x ∨ e2 = y))) ∧ (∀p1 ∈ σ)(∀p2 ∈ σ)(∀p3 ∈
σ)(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈ p2)(∃p31 ∈ p3)(∃p32 ∈ p3)(∃x1 ∈
p11)(∃y1 ∈ p12)(∃x2 ∈ p21)(∃y2 ∈ p22)(∃x3 ∈ p31)(∃y3 ∈ p32)(∀e1 ∈ p1)(∀e2 ∈
p2)(∀e3 ∈ p3)(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)(∀e31 ∈ p31)(∀e32 ∈
p32)(x1 ∈ p12 ∧ x2 ∈ p22 ∧ x3 ∈ p32 ∧ (e1 = p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e2 =
p22) ∧ (e3 = p31 ∨ e3 = p32) ∧ e11 = x1 ∧ e21 = x2 ∧ e31 = x3 ∧ (e12 = x1 ∨ e12 =
y1) ∧ (e22 = x2 ∨ e22 = y2) ∧ (e32 = x3 ∨ e32 = y3) ∧ (x1 = x2 → y1 =
y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 → x1 ∈ x3))).

Now G(x, y) is ∃σ(∃a((∀t ∈ σ)(∃z ∈ a)(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈
p1)(∃y ∈ p2)((∀p ∈ σ)(∃e ∈ p)(∃p1 ∈ e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈
x)) ∧ (∀e ∈ y)(e ∈ x ∨ (∃p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈
p)((q = p1∨q = p2)∧ (p1 = p2∨r ̸= w)∧e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈
z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈ p2)(∃e ∈ w)(∀q ∈ p)((q = p1 ∨ q =
p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸= r)) → e ∈ y)) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈
p2)((e = p1 ∨ e = p2) ∧ e1 = x ∧ (e2 = x ∨ e2 = y))) ∧ (∀p1 ∈ σ)(∀p2 ∈
σ)(∀p3 ∈ σ)(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈ p2)(∃p31 ∈ p3)(∃p32 ∈
p3)(∃x1 ∈ p11)(∃y1 ∈ p12)(∃x2 ∈ p21)(∃y2 ∈ p22)(∃x3 ∈ p31)(∃y3 ∈ p32)(∀e1 ∈
p1)(∀e2 ∈ p2)(∀e3 ∈ p3)(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)(∀e31 ∈
p31)(∀e32 ∈ p32)(x1 ∈ p12 ∧ x2 ∈ p22 ∧ x3 ∈ p32 ∧ (e1 = p11 ∨ e1 = p12) ∧ (e2 =
p21 ∨ e2 = p22) ∧ (e3 = p31 ∨ e3 = p32) ∧ e11 = x1 ∧ e21 = x2 ∧ e31 = x3 ∧ (e12 =
x1∨e12 = y1)∧ (e22 = x2∨e22 = y2)∧ (e32 = x3∨e32 = y3)∧ (x1 = x2 → y1 =
y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 → x1 ∈ x3))) ∧ (∃p ∈ σ)(∃p1 ∈ p)(∃p2 ∈ p)(∀e ∈
p)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1 ∨ e = p2) ∧ e1 = x ∧ (e2 = x ∨ e2 = y))),
and we need to apply

AxFnd[∃x¬∃yG(x, y)].

But first we must bring G(x, y) into a Σ1 form: ∃b(∃σ ∈ b)(∃a ∈ b)((∀t ∈
σ)(∃z ∈ a)(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)((∀p ∈ σ)(∃e ∈ p)(∃p1 ∈
e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x)) ∧ (∀e ∈ y)(e ∈ x ∨ (∃p ∈ z)(∃p1 ∈
p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸=
w)∧e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈
p2)(∃e ∈ w)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ ((p1 = p2 ∨ (r ∈ p2 ∧ w ̸=
r)) → e ∈ y)) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1 ∨ e = p2) ∧ e1 =
x ∧ (e2 = x ∨ e2 = y))) ∧ (∀p1 ∈ σ)(∀p2 ∈ σ)(∀p3 ∈ σ)(∃p11 ∈ p1)(∃p12 ∈
p1)(∃p21 ∈ p2)(∃p22 ∈ p2)(∃p31 ∈ p3)(∃p32 ∈ p3)(∃x1 ∈ p11)(∃y1 ∈ p12)(∃x2 ∈
p21)(∃y2 ∈ p22)(∃x3 ∈ p31)(∃y3 ∈ p32)(∀e1 ∈ p1)(∀e2 ∈ p2)(∀e3 ∈ p3)(∀e11 ∈
p11)(∀e12 ∈ p12)(∀e21 ∈ p21)(∀e22 ∈ p22)(∀e31 ∈ p31)(∀e32 ∈ p32)(x1 ∈ p12 ∧ x2 ∈
p22 ∧ x3 ∈ p32 ∧ (e1 = p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e2 = p22) ∧ (e3 = p31 ∨ e3 =
p32) ∧ e11 = x1 ∧ e21 = x2 ∧ e31 = x3 ∧ (e12 = x1 ∨ e12 = y1) ∧ (e22 = x2 ∨ e22 =
y2) ∧ (e32 = x3 ∨ e32 = y3) ∧ (x1 = x2 → y1 = y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 →
x1 ∈ x3)) ∧ (∃p ∈ σ)(∃p1 ∈ p)(∃p2 ∈ p)(∀e ∈ p)(∀e1 ∈ p1)(∀e2 ∈ p2)((e =
p1 ∨ e = p2) ∧ e1 = x ∧ (e2 = x ∨ e2 = y)) ∧ (∀c ∈ b)(c = σ ∨ c = a)), then
Collapse

∃yGΣ1(x, y)

to get another Σ1 form, namely ∃d(∃y ∈ d)(∃b ∈ d)((∃σ ∈ b)(∃a ∈ b)((∀t ∈
σ)(∃z ∈ a)(∃p1 ∈ t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)((∀p ∈ σ)(∃e ∈ p)(∃p1 ∈
e)(∀e1 ∈ p)(p1 ∈ e1 ∧ (p ∈ z ↔ p1 ∈ x)) ∧ (∀e ∈ y)(e ∈ x ∨ (∃p ∈ z)(∃p1 ∈

37

p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸=
w)∧e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈
p2)(∃e ∈ w)(∀q ∈ p)((q = p1∨q = p2)∧((p1 = p2∨(r ∈ p2∧w ̸= r)) → e ∈
y))∧(∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1∨e = p2)∧e1 = x∧(e2 = x∨e2 =
y))) ∧ (∀p1 ∈ σ)(∀p2 ∈ σ)(∀p3 ∈ σ)(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈ p2)(∃p22 ∈
p2)(∃p31 ∈ p3)(∃p32 ∈ p3)(∃x1 ∈ p11)(∃y1 ∈ p12)(∃x2 ∈ p21)(∃y2 ∈ p22)(∃x3 ∈
p31)(∃y3 ∈ p32)(∀e1 ∈ p1)(∀e2 ∈ p2)(∀e3 ∈ p3)(∀e11 ∈ p11)(∀e12 ∈ p12)(∀e21 ∈
p21)(∀e22 ∈ p22)(∀e31 ∈ p31)(∀e32 ∈ p32)(x1 ∈ p12 ∧ x2 ∈ p22 ∧ x3 ∈ p32 ∧ (e1 =
p11 ∨ e1 = p12) ∧ (e2 = p21 ∨ e2 = p22) ∧ (e3 = p31 ∨ e3 = p32) ∧ e11 = x1 ∧ e21 =
x2 ∧ e31 = x3 ∧ (e12 = x1 ∨ e12 = y1) ∧ (e22 = x2 ∨ e22 = y2) ∧ (e32 = x3 ∨ e32 =
y3) ∧ (x1 = x2 → y1 = y2) ∧ (x1 ∈ x2 ∧ x2 ∈ x3 → x1 ∈ x3)) ∧ (∃p ∈
σ)(∃p1 ∈ p)(∃p2 ∈ p)(∀e ∈ p)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1∨e = p2)∧e1 =
x∧ (e2 = x∨e2 = y))∧ (∀c ∈ b)(c = σ∨c = a))∧(∀f ∈ d)(f = y∨f = b)),
and finally

Negate[∃yGΣ1(x, y)]

to get a Π1 formula: ∀d(∀y ∈ d)(∀b ∈ d)((∀σ ∈ b)(∀a ∈ b)((∃t ∈ σ)(∀z ∈
a)(∀p1 ∈ t)(∀p2 ∈ t)(∀x ∈ p1)(∀y ∈ p2)((∃p ∈ σ)(∀e ∈ p)(∀p1 ∈ e)(∃e1 ∈
p)(p1 /∈ e1 ∨ (p ∈ z ∧ p1 /∈ x) ∨ (p /∈ z ∧ p1 ∈ x)) ∨ (∃e ∈ y)(e /∈ x ∧ (∀p ∈
z)(∀p1 ∈ p)(∀p2 ∈ p)(∀r ∈ p2)(∀w ∈ p2)(∃q ∈ p)((q ̸= p1 ∧ q ̸= p2)∨ (p1 ̸=
p2 ∧ r = w)∨ e /∈ w))∨ (∃e ∈ x)(e /∈ y)∨ (∃p ∈ z)(∀p1 ∈ p)(∀p2 ∈ p)(∀r ∈
p1)(∀w ∈ p2)(∀e ∈ w)(∃q ∈ p)((q ̸= p1∧q ̸= p2)∨((p1 = p2∨(r ∈ p2∧w ̸=
r))∧e /∈ y))∨(∃e ∈ t)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1∧e ̸= p2)∨e1 ̸= x∨(e2 ̸=
x ∧ e2 ̸= y))) ∨ (∃p1 ∈ σ)(∃p2 ∈ σ)(∃p3 ∈ σ)(∀p11 ∈ p1)(∀p12 ∈ p1)(∀p21 ∈
p2)(∀p22 ∈ p2)(∀p31 ∈ p3)(∀p32 ∈ p3)(∀x1 ∈ p11)(∀y1 ∈ p12)(∀x2 ∈ p21)(∀y2 ∈
p22)(∀x3 ∈ p31)(∀y3 ∈ p32)(∃e1 ∈ p1)(∃e2 ∈ p2)(∃e3 ∈ p3)(∃e11 ∈ p11)(∃e12 ∈
p12)(∃e21 ∈ p21)(∃e22 ∈ p22)(∃e31 ∈ p31)(∃e32 ∈ p32)(x1 /∈ p12 ∨ x2 /∈ p22 ∨ x3 /∈
p32 ∨ (e1 ̸= p11 ∧ e1 ̸= p12)∨ (e2 ̸= p21 ∧ e2 ̸= p22)∨ (e3 ̸= p31 ∧ e3 ̸= p32)∨ e11 ̸=
x1 ∨ e21 ̸= x2 ∨ e31 ̸= x3 ∨ (e12 ̸= x1 ∧ e12 ̸= y1) ∨ (e22 ̸= x2 ∧ e22 ̸= y2) ∨ (e32 ̸=
x3∧e32 ̸= y3)∨(x1 = x2∧y1 ̸= y2)∨((x1 ∈ x2∧x2 ∈ x3)∧x1 /∈ x3))∨(∀p ∈
σ)(∀p1 ∈ p)(∀p2 ∈ p)(∃e ∈ p)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1∧e ̸= p2)∨e1 ̸=
x∨ (e2 ̸= x∧e2 ̸= y))∨(∃c ∈ b)(c ̸= σ∧c ̸= a))∨ (∃f ∈ d)(f ̸= y∧f ̸= b)).

38

Finally,
AxFnd[∃xNegate[∃yGΣ1(x, y)], k]

is ∃x∀d(∀y ∈ d)(∀b ∈ d)((∀σ ∈ b)(∀a ∈ b)((∃t ∈ σ)(∀z ∈ a)(∀p1 ∈
t)(∀p2 ∈ t)(∀x ∈ p1)(∀y ∈ p2)((∃p ∈ σ)(∀e ∈ p)(∀p1 ∈ e)(∃e1 ∈ p)(p1 /∈
e1 ∨ (p ∈ z ∧ p1 /∈ x) ∨ (p /∈ z ∧ p1 ∈ x)) ∨ (∃e ∈ y)(e /∈ x ∧ (∀p ∈ z)(∀p1 ∈
p)(∀p2 ∈ p)(∀r ∈ p2)(∀w ∈ p2)(∃q ∈ p)((q ̸= p1 ∧ q ̸= p2) ∨ (p1 ̸= p2 ∧ r =
w)∨e /∈ w))∨ (∃e ∈ x)(e /∈ y)∨ (∃p ∈ z)(∀p1 ∈ p)(∀p2 ∈ p)(∀r ∈ p1)(∀w ∈
p2)(∀e ∈ w)(∃q ∈ p)((q ̸= p1∧ q ̸= p2)∨ ((p1 = p2∨ (r ∈ p2∧w ̸= r))∧ e /∈
y)) ∨ (∃e ∈ t)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1 ∧ e ̸= p2) ∨ e1 ̸= x ∨ (e2 ̸=
x ∧ e2 ̸= y))) ∨ (∃p1 ∈ σ)(∃p2 ∈ σ)(∃p3 ∈ σ)(∀p11 ∈ p1)(∀p12 ∈ p1)(∀p21 ∈
p2)(∀p22 ∈ p2)(∀p31 ∈ p3)(∀p32 ∈ p3)(∀x1 ∈ p11)(∀y1 ∈ p12)(∀x2 ∈ p21)(∀y2 ∈
p22)(∀x3 ∈ p31)(∀y3 ∈ p32)(∃e1 ∈ p1)(∃e2 ∈ p2)(∃e3 ∈ p3)(∃e11 ∈ p11)(∃e12 ∈
p12)(∃e21 ∈ p21)(∃e22 ∈ p22)(∃e31 ∈ p31)(∃e32 ∈ p32)(x1 /∈ p12 ∨ x2 /∈ p22 ∨ x3 /∈
p32 ∨ (e1 ̸= p11 ∧ e1 ̸= p12)∨ (e2 ̸= p21 ∧ e2 ̸= p22)∨ (e3 ̸= p31 ∧ e3 ̸= p32)∨ e11 ̸=
x1 ∨ e21 ̸= x2 ∨ e31 ̸= x3 ∨ (e12 ̸= x1 ∧ e12 ̸= y1) ∨ (e22 ̸= x2 ∧ e22 ̸= y2) ∨ (e32 ̸=
x3∧e32 ̸= y3)∨(x1 = x2∧y1 ̸= y2)∨((x1 ∈ x2∧x2 ∈ x3)∧x1 /∈ x3))∨(∀p ∈
σ)(∀p1 ∈ p)(∀p2 ∈ p)(∃e ∈ p)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1∧e ̸= p2)∨e1 ̸=
x ∨ (e2 ̸= x ∧ e2 ̸= y)) ∨ (∃c ∈ b)(c ̸= σ ∧ c ̸= a)) ∨ (∃f ∈ d)(f ̸= y ∧ f ̸=
b)) → ∃x(∀d(∀y ∈ d)(∀b ∈ d)((∀σ ∈ b)(∀a ∈ b)((∃t ∈ σ)(∀z ∈ a)(∀p1 ∈
t)(∀p2 ∈ t)(∀x ∈ p1)(∀y ∈ p2)((∃p ∈ σ)(∀e ∈ p)(∀p1 ∈ e)(∃e1 ∈ p)(p1 /∈
e1 ∨ (p ∈ z ∧ p1 /∈ x) ∨ (p /∈ z ∧ p1 ∈ x)) ∨ (∃e ∈ y)(e /∈ x ∧ (∀p ∈ z)(∀p1 ∈
p)(∀p2 ∈ p)(∀r ∈ p2)(∀w ∈ p2)(∃q ∈ p)((q ̸= p1 ∧ q ̸= p2) ∨ (p1 ̸= p2 ∧ r =
w)∨e /∈ w))∨ (∃e ∈ x)(e /∈ y)∨ (∃p ∈ z)(∀p1 ∈ p)(∀p2 ∈ p)(∀r ∈ p1)(∀w ∈
p2)(∀e ∈ w)(∃q ∈ p)((q ̸= p1∧ q ̸= p2)∨ ((p1 = p2∨ (r ∈ p2∧w ̸= r))∧ e /∈
y)) ∨ (∃e ∈ t)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1 ∧ e ̸= p2) ∨ e1 ̸= x ∨ (e2 ̸=
x ∧ e2 ̸= y))) ∨ (∃p1 ∈ σ)(∃p2 ∈ σ)(∃p3 ∈ σ)(∀p11 ∈ p1)(∀p12 ∈ p1)(∀p21 ∈
p2)(∀p22 ∈ p2)(∀p31 ∈ p3)(∀p32 ∈ p3)(∀x1 ∈ p11)(∀y1 ∈ p12)(∀x2 ∈ p21)(∀y2 ∈
p22)(∀x3 ∈ p31)(∀y3 ∈ p32)(∃e1 ∈ p1)(∃e2 ∈ p2)(∃e3 ∈ p3)(∃e11 ∈ p11)(∃e12 ∈
p12)(∃e21 ∈ p21)(∃e22 ∈ p22)(∃e31 ∈ p31)(∃e32 ∈ p32)(x1 /∈ p12 ∨ x2 /∈ p22 ∨ x3 /∈
p32 ∨ (e1 ̸= p11 ∧ e1 ̸= p12)∨ (e2 ̸= p21 ∧ e2 ̸= p22)∨ (e3 ̸= p31 ∧ e3 ̸= p32)∨ e11 ̸=
x1 ∨ e21 ̸= x2 ∨ e31 ̸= x3 ∨ (e12 ̸= x1 ∧ e12 ̸= y1) ∨ (e22 ̸= x2 ∧ e22 ̸= y2) ∨ (e32 ̸=
x3∧e32 ̸= y3)∨(x1 = x2∧y1 ̸= y2)∨((x1 ∈ x2∧x2 ∈ x3)∧x1 /∈ x3))∨(∀p ∈
σ)(∀p1 ∈ p)(∀p2 ∈ p)(∃e ∈ p)(∃e1 ∈ p1)(∃e2 ∈ p2)((e ̸= p1∧e ̸= p2)∨e1 ̸=
x ∨ (e2 ̸= x ∧ e2 ̸= y)) ∨ (∃c ∈ b)(c ̸= σ ∧ c ̸= a)) ∨ (∃f ∈ d)(f ̸= y ∧ f ̸=
b))∧ (∀k ∈ x)∃d(∃y ∈ d)(∃b ∈ d)((∃σ ∈ b)(∃a ∈ b)((∀t ∈ σ)(∃z ∈ a)(∃p1 ∈
t)(∃p2 ∈ t)(∃x ∈ p1)(∃y ∈ p2)((∀p ∈ σ)(∃e ∈ p)(∃p1 ∈ e)(∀e1 ∈ p)(p1 ∈
e1∧ ((p /∈ z∨p1 ∈ x)∧ (p ∈ z∨p1 /∈ x)))∧ (∀e ∈ y)(e ∈ x∨ (∃p ∈ z)(∃p1 ∈
p)(∃p2 ∈ p)(∃r ∈ p2)(∃w ∈ p2)(∀q ∈ p)((q = p1 ∨ q = p2) ∧ (p1 = p2 ∨ r ̸=
w)∧e ∈ w))∧ (∀e ∈ x)(e ∈ y)∧ (∀p ∈ z)(∃p1 ∈ p)(∃p2 ∈ p)(∃r ∈ p1)(∃w ∈
p2)(∃e ∈ w)(∀q ∈ p)((q = p1∨ q = p2)∧ ((p1 ̸= p2∧ (r /∈ p2∨w = r))∨ e ∈
y)) ∧ (∀e ∈ t)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1 ∨ e = p2) ∧ e1 = x ∧ (e2 =
x ∨ e2 = y))) ∧ (∀p1 ∈ σ)(∀p2 ∈ σ)(∀p3 ∈ σ)(∃p11 ∈ p1)(∃p12 ∈ p1)(∃p21 ∈
p2)(∃p22 ∈ p2)(∃p31 ∈ p3)(∃p32 ∈ p3)(∃x1 ∈ p11)(∃y1 ∈ p12)(∃x2 ∈ p21)(∃y2 ∈
p22)(∃x3 ∈ p31)(∃y3 ∈ p32)(∀e1 ∈ p1)(∀e2 ∈ p2)(∀e3 ∈ p3)(∀e11 ∈ p11)(∀e12 ∈
p12)(∀e21 ∈ p21)(∀e22 ∈ p22)(∀e31 ∈ p31)(∀e32 ∈ p32)(x1 ∈ p12 ∧ x2 ∈ p22 ∧ x3 ∈
p32 ∧ (e1 = p11 ∨ e1 = p12)∧ (e2 = p21 ∨ e2 = p22)∧ (e3 = p31 ∨ e3 = p32)∧ e11 =
x1 ∧ e21 = x2 ∧ e31 = x3 ∧ (e12 = x1 ∨ e12 = y1) ∧ (e22 = x2 ∨ e22 = y2) ∧ (e32 =
x3∨e32 = y3)∧ (x1 ̸= x2∨y1 = y2)∧ (x1 /∈ x2∨x2 /∈ x3∨x1 ∈ x3))∧ (∃p ∈
σ)(∃p1 ∈ p)(∃p2 ∈ p)(∀e ∈ p)(∀e1 ∈ p1)(∀e2 ∈ p2)((e = p1∨e = p2)∧e1 =
k∧(e2 = k∨e2 = y))∧(∀c ∈ b)(c = σ∨c = a))∧(∀f ∈ d)(f = y∨f = b))).

39

C Metafunctions reference
The following are only used in the present article.

Free[φ] Set of free variables of a formula φ.
Form(L) Formulas of the languaje L.
Var(L) Variables of the languaje L.
Vars[φ] Set of all variables of a formula φ.

The following metaformulas return the axioms:

AxColl[(∀x ∈ y)∃zφ(x, y, z, a), w] Collection axiom for the listed formula
and the collection variable w. See definition 6.4.

AxFnd[∃xφ(x, z⃗), y] Foundation axiom whose consequent is ∃x(φ(x, z⃗) ∧
(∀y ∈ x)¬φ(y, z⃗)). See definition 4.2.

AxSep[φ, a, x, y] Separation of x = {y ∈ a : φ(y)}. See definition 6.1.

The following syntactically manipulate formulas:

Collapse[∃x1...∃xmφ(x1, ..., xm, z⃗), n] Collapses n existential quantifiers into
one (n < m). See definition 5.5.

Collapsen[∃x1...∃xmφ(x1, ..., xm, z⃗)] A more succint way to express the
same as Collapse[∃x1...∃xmφ(x1, ..., xm, z⃗), n].

Collect[(∀x ∈ y)∃zφ(x, y, z, a⃗), w] The right-hand part of the Collection
axiom, i.e., ∃w(∀x ∈ y)(∃z ∈ w)φ(x, y, z, a⃗). See definition 6.3.

Enum[φ, f, e, x1, ..., xn] Basically it is f = {x1, ..., xn}∧φ(f, e, x1, ..., xn, a⃗),
but with some subtleties and optimizations. See definition 5.3.

ExpandExists[φ1 ∧ ... ∧ φn, i] Move the existential quantifier of φi outside
the conjunction (this has to be possible, i.e., 1 ≤ i ≤ n, and the
quantifier variable must not be free in any φj , j ̸= i). The same
operation, but applied to a disjunction instead to a conjunction.
There are some additional optimizations to keep formulas simple,
see definition 2.18.

ExpandForall[φ1 ∧ ... ∧ φn, i] The same as ExpandExists, but with univer-
sal quantifiers instead of existential. See definition 2.18.

Found[∃xφ(x, z⃗), y] The right-hand side of the corresponding Foundation
axiom, i.e., ∃x(φ(x, z⃗) ∧ (∀y ∈ x)¬φ(y, z⃗)). See definition 4.1.

Fun[φ(f, p⃗, x⃗, y⃗, z⃗), f ; p, e] The set f is a function made of pairs pi =
⟨xi, yi⟩ = {{p1i }, {p1i , p2i }}, i = 1, 2, such that φ(f, p⃗, x⃗, y⃗, z⃗); e is
an internal stem and may be omitted; if φ does not use any of the
p, p may also be omitted. See definition 8.7.

FunDiff[f1, f2, x; p, e] Equivalent to f1(x) ̸= f2(x); f1 and f2 are assumed
to be functions; p and e are internal variables and may be omitted.
See definition 8.8.

FunVal[f, x, y; p, e] Equivalent to f(x) = y; f is assumed to be a function;
p and e are internal variables and may be omitted. See definition
8.9.

InDomain[x, f ; p, e] Equivalent to x ∈ dom f ; f is assumed to be a func-
tion; p and e are internal variables and may be omitted. See defini-
tion 8.10.

40

MoveUp[(∃x1 ∈ y1)...(∃xn ∈ yn)∃zφ(z⃗, y⃗, z, a⃗), n] Moves the unbounded ex-
istential to the beginning of the formula, i.e., produces the logically
equivalent formula ∃z(∃x1 ∈ y1)...(∃xn ∈ yn)φ(z⃗, y⃗, z, a⃗). See defi-
nition 2.20.

Negate[φ] Returns a formula logically equivalent to ¬φ, but where nega-
tion has been recursively applied along the syntax tree until atomic
formulas are themselves inverted (negated). See definition 2.16.

Pair[φ, x, y; p, e] Equivalent to p = {x, y}, where p, x and y are free, but
with some additional subtleties and optimizations. See definition
7.1.

Restrict[f, a, r; p, e] Equivalent to r = f ↾ a; p and e are internal variables
and may be omitted. See definition 8.12.

Particularizen[∃x1...∃xnφ(x⃗, z⃗), ∀x1...∀xnψ(x⃗, z⃗)] This metafunction returns
∃x1...∃xn(φ(x⃗, z⃗) ∧ ψ(x⃗, z⃗)). See definition 2.25.

Rel[φ(r, x, y, z⃗), r, x, y; p, e] Equivalent to (∀t ∈ r)(t = ⟨x, y⟩∧φ(r, x, y, z⃗)),
i.e., r is a relation such that all pairs ⟨x, y⟩ ∈ r verify φ; p and e are
internal variables, and may be omitted. See definition 8.3.

Tran[x; y, z] Equivalent to (∀y ∈ x)(∀z ∈ y)(z ∈ x), i.e., x is transitive.
See definition 2.27.

Tuple[φ(t, x, y, z⃗), t, x, y; p, e] Equivalent to t = ⟨x, y⟩ ∧φ(t, x, y, z⃗); x and
y are bound (i.e., created in the metaformula result as elements of
elements of t); p and e are internal variables, and may be omitted.
See definition 7.4.

Tuples[φ(x⃗, y⃗, z⃗), n, r, x, y; p, e] A generalization of Tuple: x, y, p and e
are stems, i.e. initial parts of variable names. The metafunction
states that r is a relation, and creates n ordered pairs ⟨xi, yi⟩ ∈ r,
i = 1, ..., n, such that φ(x1, ..., xn, y1, ..., yn, z⃗); p and e are stems for
internal variables, and may be omitted. See definition 8.5.

Tuplesn[φ(x⃗, y⃗, z⃗), r, x, y; p, e] Equivalent to Tuples[φ(x⃗, y⃗, z⃗), n, r, x, y; p, e].

References
[1] Keith J. Devlin. Constructibility. Perspectives in Mathematical

Logic. Heildelberg: Springer-Verlag, 1984.
[2] Kenneth Kunen. Set Theory — An Introduction to Indepen-

cence Proofs. Vol. 102. Studies in Logic and the Foundation of
Mathematics. The Netherlands: Elsevier, 1980.

41

	I The basics
	Introduction
	Statement of our task
	The problem of defined notions
	The contingency of definitions and proofs
	The absence of a normal-form theorem for Delta0 formulas
	The unmanageability of pure systems
	Ways to a solution
	Metafunctions vs. defined notions
	Metafunctions vs. formula transformations
	Computer programs do it better

	Structure of this article
	Further work
	Acknowledgements

	Notation, basic facts and definitions
	Syntax
	Elementary transformations

	Denoting complexities
	Set Theory: the first axioms
	``Elegant'' axioms vs. ``expressive'' axioms
	The Empty Set Axiom
	The Extensionality Axiom
	The Foundation Axiom

	Enumerations and quantifiers
	The Pairing Axiom
	The Union Axiom
	Finite sets
	Collapsing quantifiers

	Separation and collection
	The Separation Axiom
	The Collection Axiom
	Strengthening Collection

	Tuples
	Creating tuples
	Ordered pairs
	Definition
	Complexity of ``being an ordered pair''

	Classes, relations and functions
	Classes
	Class functions
	Relations
	Functions

	II Transfinite induction and recursion
	Transfinite epsilon-induction and recursion
	Suitable functions
	Compatibility of suitable functions
	Building G
	G has a Sigma1 equivalence
	G is a partial function
	G is total
	Summary of axioms needed for recursion
	Delta0 case
	Sigma1 case

	III Appendix
	An example: the transitive closure
	A curiosity: The Pi1-foundation axiom for the transitive closure case
	Metafunctions reference

