
The Search Order for External Rexx Files∗

Josep Maria Blasco
Espacio Psicoanalítico de Barcelona

Balmes, 32, 2º 1ª – 08007 Barcelona
jose.maria.blasco@gmail.com

+34 93 454 89 78

May the 16th, 2023

Abstract
We start by studying a subtle anomaly in the Open Object Rexx

(ooRexx) interpreter: a ::Requires "../filename" directive or a
Call "../filename" instruction will not work as documented. We
point to the places in the interpreter source code where this behaviour
is implemented, and consider two opposed possibilities: fixing the
anomaly, or deciding that it is a feature, and then fixing the docu-
mentation.

To be able to reach an informed decision, we embark on a series
of tests: these allow us to compare the behaviour of the Call instruc-
tion in seven different Rexx interpreters and under three operating
systems. We also study the working of the Windows CMD.EXE inter-
preter, of the Windows SearchPath API, of two C/C++ compilers,
and of Python’s pathlib module.

After classifying and analysing the results of our tests, we will
be in possession of an ample perspective. We will then introduce a
set of ooRexx classes that will allow us to simulate the search order
algorithms of all of the interpreters and environments we have tested,
and to create new search algorithms. In particular, we will present a
class that implements an enhanced search algorithm for ooRexx that
fixes the anomaly and exhibits some interesting additional properties.

We will finish by demonstrating a proof-of-concept implementation
of a pluggable external search algorithm system.

∗URL of this document: https://www.epbcn.com/pdf/josep-maria-blasco/2023-
05-16-The-search-order-for-external-rexx-files.pdf. Presented to the 34th In-
ternational Rexx Language Symposium, held in Amsterdam and online from the 14th to
the 17th of May, 2023.

1

https://www.epbcn.com/equipo/josep-maria-blasco/
https://www.epbcn.com/
mailto:jose.maria.blasco@gmail.com
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16-The-search-order-for-external-rexx-files.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16-The-search-order-for-external-rexx-files.pdf

Acknowledgements
I would like to start by thanking Joan Batet, Lisa Mc Connell, Silvina

Fernández, Xavier Navarro, Joel Padulles, David Palau and Francesc Rosés,
who have contributed to enhance this document by patiently reading several
drafts, finding typos, indicating paragraphs that were unclear, and suggesting
all kinds of corrections and enhancements.

I would also like to give my thanks to Erich Steinböck, who pointed me
to the relevant parts of the interpreter code; to Rony G. Flatscher, who
was especially kind and encouraging, and patiently introduced me to the
arcanes of preparing and submitting documentation, code and test patches
for ooRexx; to René Vincent Jansen, who invited me to participate in the
RexxLA Architecture Advisory Council, a.k.a. Architecture Review Board
(arb), and provided resources in the GitHub rexx-repository of the Rexx
Language Association for me to store my programs, test results, etc.; to the
members of the Architecture Review Board itself, for their critical comments
and encouragement; to my colleagues at Espacio Psicoanalítico de Barcelona,
for bearing with me while I submerged myself in this research, listening to my
musings, and being loving and supportive; to the participants of the different
mailing lists, especially the arb list, the developers list, and the RexxLA
list; to the Rexx Language Association, for stimulating my creativity; and,
finally, to the ooRexx developers, for maintaining and enhancing a wonderful
version of the Rexx language

2

Contents
Acknowledgements 2

Introduction 5
References and sources . 6

1 An anomaly 6
1.1 Simple calls . 7
1.2 Downwards-relative calls . 8
1.3 The anomaly: upwards-relative calls 9

2 A technical explanation 11
2.1 In the Unix-like side of things 12
2.2 In the Windows side of things 13

3 How to interpret the anomaly 15
3.1 As an interpreter bug . 15
3.2 As a documentation bug . 16
3.3 A limitation that is very difficult to fix 16
3.4 An internal inconsistency . 16
3.5 Elements for a decision . 17

4 A number of tests 17
4.1 Interpreters and operating systems 17
4.2 Two bugs in two interpreters 18

4.2.1 The SAA bug . 18
4.2.2 The hasExtension bug 19

4.3 The directory structure . 20
4.4 Types of tests . 23

4.4.1 Common tests . 23
4.4.2 Drive-relative tests . 24

4.5 Special tests . 26
4.5.1 The Windows Command Line Interpreter (CMD.EXE) . 26
4.5.2 The Windows SearchPath API 26
4.5.3 Checking the C/C++ compilers 26
4.5.4 Python pathlib and backslash-relative filenames . . . 27

5 Classifying and analysing the results 28
5.1 Eliminating extensions . 29
5.2 Equivalence classes . 30

5.2.1 Class 1: Regina, REXXSAA (amended), CMD.EXE . 30

3

5.2.2 Class 2: Object Rexx for OS/2 31
5.2.3 Class 3: ooRexx (5.1.0 beta) and Windows SearchPath 31

5.3 In summary . 31

6 Modelling external search algorithms 33
6.1 Location-first and qualifier-first algorithms 33
6.2 Location-exception and qualifier-exception clauses 34
6.3 The composition operation . 34
6.4 The ooRexxExternalSearch class 35
6.5 The ReginaRexxExternalSearch class 35
6.6 The driveRelative boolean attribute 36
6.7 The ooRexxEnhancedExternalSearch class 36

7 A pluggable external search system 36

8 Further work 37

9 Conclusions 38

Appendices: Test results 39
Regina Rexx under OS/2 . 40
Object Rexx under OS/2 . 41
Classic Rexx under OS/2, with the SAA bug fixed 42
Classic Rexx (rexxsaa) under OS/2 43
Open Object Rexx under Ubuntu 44
Regina Rexx under Ubuntu . 45
Open Object Rexx 5.0.0 under Windows 46
Open Object Rexx 5.1.0 beta after commit r12651 under Windows . 47
Regina Rexx under Windows . 48
The Windows Command Line Interface (CMD.EXE) 49
The Windows SearchPath API . 50

4

Introduction
All the results and findings presented in this article are the consequences

of investigating a very simple fact, something apparently unimportant, banal:
when we use the Open Object Rexx (ooRexx) interpreter, a Call instruction
of the form

Call "../routine"

will not work as expected (and documented): instead of searching first in
the same (or caller’s) directory, then in the current directory, and finally in a
number of paths (including the PATH environment variable), the search will
be limited to the current directory. The same is true when a ::Requires
directive has a similar form, for example

::Requires "../myClass"

This anomaly1 of the ooRexx interpreter is highly unexpected, apart from
being contrary to the documentation. We will devote the first of our sections,
called An anomaly, on page 6, to the detailed description of this behaviour.

Section 2, A technical explanation, on page 11, examines the technical
causes of the anomaly. We will submerge in the entrails of the interpreter
code, where we will find a number of unexpected surprises.

In section 3, How to interpret the anomaly, on p. 15, we ponder whether
to interpret the anomaly as an interpreter bug or as a documentation bug.
We also point to a striking internal inconsistency in the behaviour of the
ooRexx interpreter. Our investigation will not be conclusive; we will end up
by deciding that we need to embark ourselves in a quest for more information.

We will produce this new information by implementing and running a
number of tests. These tests, their types and their variations are described
in detail in section 4, A number of tests, on page 17.

In section 5, Classifying and analysing the results, on page 5, we will
classify and analyze the results of our tests. This will allow us to obtain
a quite ample perspective over the general problem of the external search
algorithms.

Section 6, Modelling external search algorithms, on page 33, will be de-
voted to presenting a set of ooRexx classes that model the behaviour of
external search algorithms. We will introduce classes for all the algorithms
studied in the previous sections, and, additionally, we will introduce a new,
enhanced, class that completely fixes the anomaly.

1Which also extends to Call statements of the form Call "./Routine", or requires
directives of the form Requires "./myClass.rex".

5

In section 7, A pluggable external search system, on page 36, we will intro-
duce an experimental system that will allows us to install a search algorithm
and then call a routine, knowing that all the Call statements present in this
routine (and in any subroutine called from this same routine, and so on,
recursively) will be resolved using the installed algorithm.

In section 8, Further work, on page 37, we point to possible avenues to
widen our investigation.

Finally, in section 9, Conclusions, on page 38, we present the conclusions
of our work, after a quick recapitulation of our journey.

The Appendices, on page 39, collect a simplified version of the test results.

References and sources
Instead of building a bibliography, which can be cumbersome to use, we

are giving all the required references to manuals, online help files, etc., when
the respective documents are quoted.

All the test programs, results files, etc. referenced in this document can
be downloaded from https://www.epbcn.com/pdf/josep-maria-blasco/
2023-05-16/ and from https://github.com/RexxLA/rexx-repository/
tree/master/ARB/standards/work-in-progress/search-order.

The reader might also want to take a look at the accompanying presen-
tation document, a set of slides in the 16:9 format.2

1 An anomaly
Our research begins with the study of an anomaly in the Open Object

Rexx interpreter (ooRexx); this first section is devoted to the presentation
and study of that anomaly.

As it is well known, when a Call instruction or a ::Requires directive
refer to an external file, there is a search order algorithm for external files
that stipulates that the “same” (or caller’s) directory should be searched first,
then the current directory, and then a number of other directories, ended by
those specified in the PATH environment variable.

All the relevant details are contained in the first paragraphs of the “Locat-
ing External Rexx Files” section of the ooRexx manual, which we copy below:

2https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/2023-05-16-
The-search-order-for-external-rexx-files-Slides.pdf

6

https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/search-order
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/work-in-progress/search-order
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/2023-05-16-The-search-order-for-external-rexx-files-Slides.pdf
https://www.epbcn.com/pdf/josep-maria-blasco/2023-05-16/2023-05-16-The-search-order-for-external-rexx-files-Slides.pdf

7.2.1.1. Locating External Rexx Files

Rexx uses an extensive search procedure for locating program files.
The first element of the search procedure is the locations that will be
checked for files. The locations, in order of checking, are:

1. The same directory the program invoking the external routine is
located. If this is an initial program execution or the calling program
was loaded from the macrospace, this location is skipped. Checking
in this directory allows related program files to be called without
requiring the directory be added to the search path.

2. The current filesystem directory.
3. Some applications using Rexx as a scripting language may define

an extension path used to locate called programs. If the Rexx pro-
gram was invoked directly from the system command line, then no
extension path is defined.

4. Any directories specified via the REXX_PATH environment variable.
5. Any directories specified via the PATH environment variable.

[Open Object Rexx Reference (rexxref.pdf), release 5.0.0, section 7.2.1.1]

1.1 Simple calls
To simplify our argumentation, we can assume, in the following, and with-

out loss of generality, (a) that the program was invoked from the command
line (and therefore the extension path is absent); (b) that the REXX_PATH
environment variable is empty, and (c) that the PATH environment variable
contains only a single directory. We will additionally assume that the same
directory is called precisely same, that the current directory is called curr,
and that the only directory in the path is called path. If we place these three
directories inside a main folder, we will get the following structure.

7

(Main folder)

same (same directory)

P.rex When P calls Q...

Q.rex 1 ...Q can be located here, ...

curr (current directory)

Q.rex 2 ...or here, ...

path (path directory)

Q.rex 3 ...or here.

When a program P located in the same directory issues a Call Q instruc-
tion, directories same, curr and path will be searched for Q, in that order,
until Q is found. If Q is not found, a syntax error (error 43.1: Could not
find routine "Q") will be raised.

This set of simplifying assumptions will allow us to focus on the important
questions without getting lost in the details (very long paths, etc.), and will
come in very handy later, when we will have to prepare a number of tests
(p. 17).

1.2 Downwards-relative calls
Now imagine that we have a library of programs, collected in a certain

child directory of either same, curr or path. This subdirectory is called
"lib". We could write Call "lib/Q" (or Call "lib\Q" if under Windows
or OS/2), and expect that the search algorithm searches for Q first in the
lib subdirectory of same, then in the lib subdirectory of curr, and finally
in the lib subdirectory of path. In other words, the filename "lib/Q" will
be relative to same, curr and path, in that order: Q will be searched for in
same/lib, curr/lib and path/lib.

Indeed, this is what really happens. We can visualize the different possible
combinations as follows:

8

(Main folder)

same (same directory)

lib (Child of the same directory)

Q.rex 1 ...Q can be located here, ...
P.rex P calls "lib/Q"...

curr (current directory)

lib (Child of the current directory)

Q.rex 2 ...or here, ...

path (path directory)

lib (Child of the path directory)

Q.rex 3 ...or here.

1.3 The anomaly: upwards-relative calls
Now for the anomaly: if instead of searching in a child directory we want

to search in a parent directory, we should be able to write Call "../Q" (or
Call "..\Q" under Windows or OS/2), and expect that the search algorithm
searches for Q first in the parent directory of same, then in the parent directory
of curr, and finally in the parent directory of path. In the same way that
"lib/Q" was relative to same, curr and path, in that order, we would expect
that "../Q" would be, similarly, relative to same, curr and path, in that
order: Q should be searched for in "same/..", "curr/.." and "path/..".
Is this what is going to happen?

Let us draw the corresponding directory structure diagram before answer-
ing this question. This is what we should be expecting to happen.

9

(Main folder)

dotdotsame (Parent of the same directory)

same (same directory)

lib (Child of the same directory)

P.rex P calls "../Q"...

Q.rex 1 ...Q can be located here, ...

dotdotcurr (Parent of the current directory)

curr (current directory)

lib (Child of the current directory)

Q.rex 2 ...or here, ...

dotdotpath (Parent of the path directory)

path (path directory)

lib (Child of the path directory)

Q.rex 3 ...or here.

What is really happening, when we Call "../Q"? That, instead of
searching in same, curr and path, only curr is searched: the search is limited
to the current directory. This is the anomaly.3

3Indeed, the anomaly also applies when we Call "./Q", but, since this should be
equivalent to Call Q, which works perfectly, we have considered the Call "../Q" case to
be more representative.

10

(Main folder)

dotdotsame (Parent of the same directory)

same (same directory)

lib (Child of the same directory)

P.rex P calls "../Q"...
Q.rex same/.. is not searched

dotdotcurr (Parent of the current directory)

curr (current directory)

lib (Child of the current directory)

Q.rex Only curr is searched

dotdotpath (Parent of the path directory)

path (path directory)

lib (Child of the path directory)

Q.rex path/.. is not searched

I have to say that this anomaly, apart from being contrary to the docu-
mentation, is something that is highly unexpected. Two ooRexx committers
believed that ooRexx worked as one would expect and as it is documented,
not as it really works.

2 A technical explanation
What is going on, what is the cause of this anomaly? By looking at the

source code,4 one can find, in SysFileSystem.cpp, a platform-dependent file,
a boolean function called primitiveSearchName. This function, in case the
checked filename verifies hasDirectory(filename), bypasses the complete

4When I started this investigation, my familiarity with the ooRexx source code was
zero. I have to thank Erich Steinböck for the initial pointers to the source.

11

search and limits it to the current directory.

2.1 In the Unix-like side of things
And what is the code for this hasDirectory function? It is slightly

different for Windows and for Unix-like. Here’s the Unix-like version:

1 /**
2 * Test if a filename has a directory portion
3 *
4 * @param name The name to check.
5 *
6 * @return true if a directory was found on the file, false if
7 * there is no directory.
8 */
9 bool SysFileSystem::hasDirectory(const char *name)

10 {
11 // hasDirectory() means we have enough absolute directory
12 // information at the beginning to bypass performing path searches.
13 return name[0] == '~' || name[0] == '/' ||
14 (name[0] == '.' && name[1] == '/') ||
15 (name[0] == '.' && name[1] == '.' && name[2] == '/');
16 }

A filename that starts with the '~' character resides in a home directory
(i.e., in a directory of the form /user/username), and, therefore, it is abso-
lute. Similarly, a filename that starts with the '/' character is also absolute,
as '/' is the root directory. And, of course, when a filename is absolute, it
does not make any sense to search in same, curr, path, or anywhere else: the
filename itself contains enough information to unequivocally locate the file,
and therefore it is rational and adequate to skip the search order altogether.

On the other hand, when a filename starts with './' or '../', it is not
(contrary to the function documentation) absolute, but relative. Relative to
what? Relative to the directory we are considering. '.' is a no-op, so that,
for example, './lib', relative to 'same', means 'same/./lib', which is
equivalent to 'same/lib'.

Similarly, '..' means the parent directory of the considered directory, so
that, for example, '../file', relative to 'same', means 'same/../file',
which, assuming that 'dotdotsame' is the parent directory of 'same', would
be equivalent to 'dotdotsame/file'.

Indeed, the last two lines,

(name[0] == '.' && name[1] == '/') ||
(name[0] == '.' && name[1] == '.' && name[2] == '/');

12

can be eliminated,5 and then the interpreter happily accepts all filenames
starting with './' or '../', and checks them against all the directories (i.e.,
against 'same', 'curr' and 'path', in our simplified version).

It works identically, in that respect, to other language processors, like the
GNU C/C++ compiler, gcc, or the Microsoft Visual Studio C/C++ com-
piler, cl, where constructions like '.' and '..' are used all the time, for
example in #include directives, and they are resolved against all the direc-
tories specified using the -I compiler option (or using some other compiler
mechanism).

In fact, one gets the impression that these two lines are not part of the
original code, but were added later, as an afterthought. This idea is, of
course, speculation, but it is backed by the fact that the OS/2 version of
Object Rexx searches in curr and in path (it cannot search in same, because
Object Rexx for OS/2 does not have the concept of the “same” directory).

Still more: if these two lines are removed, the comments in the source
code cease to be wrong.

2.2 In the Windows side of things
Let us now take a look at the Windows side of things to see if we can get

more information. Here is the Windows version of hasDirectory:

1 /**
2 * Test if a filename has a directory portion
3 *
4 * @param name The name to check.
5 *
6 * @return true if a directory was found on the file, false if
7 * there is no directory.
8 */
9 bool SysFileSystem::hasDirectory(const char *name)

10 {
11 // hasDirectory() means we have enough absolute directory
12 // information at the beginning to bypass performing path searches.
13 // (there are more ways to specify a drive than just d: but still ..)
14 return name[0] == '\\' || name[1] == ':' ||
15 (name[0] == '.' && name[1] == '\\') ||
16 (name[0] == '.' && name[1] == '.' && name[2] == '\\');
17 }

5As a proof-of-concept, I have submitted a patch (see the attachment named
unix.SysFileSystem.cpp.diff in SourceForge bug no. 1865, https://sourceforge.
net/p/oorexx/bugs/1865/) that eliminates them. After applying the patch, the full
ooRexx test suite passes.

13

https://sourceforge.net/p/oorexx/bugs/1865/
https://sourceforge.net/p/oorexx/bugs/1865/

The code is very similar to the Unix-like version, with the necessary
adjustments, i.e., substituting "/" by "\", or handling the existence of drives.

Indeed, name[1] == ':' is not exactly absolute, since one can use
forms like D:path\file, which are relative to the current directory of
the D: drive; similarly, name[0] == '\\' is not absolute either, but
relative to the root of the current drive. The "." and ".." cases are
identical to the Unix-like version.

What makes the difference between the Windows version and the Unix-
like version of the interpreters is not the hasDirectory function, but how
the “normal” cases are handled (i.e., those were hasDirectory is false).

I will try to summarize how the interpreter works. In both versions, a
super-path is formed first. It contains the same directory, the current direc-
tory (in the form "."), the value of the application-defined extra path, if any,
and, finally, the values of the REXX_PATH and PATH environment variables.

The Unix-like version takes this super-path, breaks it into directories,
and then concatenates each of these directories to the supplied filename,6 to
obtain (hopefully) absolute filenames.

The Windows version, on the other hand, takes the constructed super-
path and the supplied filename and passes them (along with the correspond-
ing extension, if appropriate) as arguments to the Windows SearchPath API.
SearchPath performs the search and, if a file is found, it returns its path and
file name.

At this point we find something: SearchPath does not work as expected
on filenames that start with ".\" or "..\". The developers were well aware
of this fact: see the comments before the hasDirectory call in the Windows
version of SysFileSystem::primitiveSearchName:

1 // if this appears to be a fully qualified name, then check it as-is and
2 // quit. The path searches might give incorrect results if performed with
3 // such a name and this should only check on the raw name.
4 if (hasDirectory(tempName))
5 {
6 // check the file as is first
7 return checkCurrentFile(tempName, resolvedName);
8 }

Let us forget about the idea that filenames starting with ".\" or "..\"
are “fully qualified” — we have already discussed it before. The point is that

6We do not take into consideration the handling of file extensions at this point of our
reasoning.

14

the developers know that SearchPath does not give “correct” results, and
are programming against this fact.

One gets the impression —but we are, once more, speculating— that
the precautions that are necessary in Windows were later backported to the
Unix-like world, so that the interpreter worked in the exact same way under
Windows and under Unix-like systems.

The fact is that getting the Windows version to work “as expected”
(i.e., as described in the manual) would be more involved than simply
suppressing two lines in hasDirectory: one would need to manually
form each and every filename, by concatenating the different directo-
ries contained in the super-path to the supplied filename, as in the
Unix-like version. But the Windows world is much more complicated,
in this respect, than the Unix-like world. In fact, it is a really horrible
world.7

3 How to interpret the anomaly
3.1 As an interpreter bug

How to interpret this anomaly? What we know for sure is that there is a
discrepancy between the documentation and the observed behaviour of the
interpreter.

The first, and maybe the more obvious, possibility, would be to stipulate
that the anomaly is an interpreter bug. The behaviour of the interpreter
should be corrected, so that it works as documented. Although this might
seem the easiest and more reasonable path to follow, implementing it would
have three disadvantages.

First, it would change the established behaviour of the interpreter. There
might conceivably exist some programs that rely on the current, undocu-
mented, behaviour, and patching this behaviour might break these programs.

Second, it would force some users to retrain their conceptions. Some
programmers, for example, believe that '.' has to refer to the current
directory. But eliminating the anomaly would mean that Call './program'
would search for program in the same directory, in the current directory and
in the path directories, instead of only in the current directory, which may
seem difficult to accept to these programmers.

7See, for example, the following Microsoft article, File path formats on
Windows systems (https://learn.microsoft.com/en-us/dotnet/standard/io/file-
path-formats), where one may find filenames starting with "\\.\" or "\\?\", apart from
UNC names, like \\server\share\path-to\file, and so on.

15

https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats
https://learn.microsoft.com/en-us/dotnet/standard/io/file-path-formats

Third, ironing out the anomaly needs a substantial amount of program-
ming, in the Windows side of things.

3.2 As a documentation bug
The second possibility would be to stipulate that, instead of constituting

an interpreter bug, the anomaly really is a documentation bug, i.e., that the
documentation should be patched, not the interpreter. The anomaly would
not be a bug, but an (undocumented) feature. Patching the documentation
would be much more economical than patching the interpreter, of course, but
it also carries its own set of disadvantages.

First, and more important, it is difficult to explain to the user: “in most
cases, the same, current and path directories will be searched, but, look,
when the filename starts with '.' or '..', well, we then have another set
of rules...”. We would be introducing an asymmetry without giving, at the
same time, a convincing explanation for that asymmetry.

Second, it limits the possibilities of the user, instead of giving her maximal
freedom and allow her to limit herself is she so desires. Additionally, this
limitation is almost unfixable (more about that below, p. 16).

Third, it introduces rules that are internally inconsistent.
As these two last points are important, they will get separate elaboration.

3.3 A limitation that is very difficult to fix
If we want Call "../program" to look first in the parent of the same

directory, we can always get the value of this directory (using a Parse Source
instruction), temporarily change the current directory to the same directory,
and then issue our Call instruction. This is an ugly hack, but it works.

But —and this is a big “but”—, when instead of a Call instruction what
we have is a ::Requires directive, there is no reasonable way to fix the be-
haviour of ::Requires, because directives are processed before any code in
the program has had any opportunity to run. We could attempt to use a se-
curity manager to intercept and reroute the target of ::Requires directives;
unfortunately, the security manager is broken for ::Requires.8

3.4 An internal inconsistency
Indeed, there is a certain way to overcome the effects of the anomaly,

although it is such an ugly kludge that we have refrained, until now, from
8See SourceForge bug #1886 (https://sourceforge.net/p/oorexx/bugs/1886/).

16

https://sourceforge.net/p/oorexx/bugs/1886/

mentioning it: where Call "../program" (or ::Requires "../program")
does not work as intended, substitute it by Call "lib/../../program"
(or ::Requires "lib/../../program").9 The fact that the expressions
"../program" and "lib/../../program" are supposed to be equivalent
but they still produce different effects point to an unfortunate internal in-
consistency in the handling of filenames (as we will see later, this internal
inconsistency is a (mis-)feature of the Windows SearchPath API).

3.5 Elements for a decision
We have some arguments that lead us to interpret our anomaly as a

language processor bug, and some other arguments that lead us to interpret
it as a documentation bug. Each set of arguments also entail their own set
of disadvantages.

How to come to a decision? One additional argument would run as fol-
lows: maybe we are lacking some information; maybe there is a “Rexx way”
of doing things, of which we are not aware enough; and maybe, if we stud-
ied how other interpreters tackle the same problem (and even how other
environments tackle the same problem) we would, once in possession of a
wider perspective, see things differently, and the decision would come to us
naturally, in the light of our new understandings.

4 A number of tests
4.1 Interpreters and operating systems

To study how other interpreters tackle the Search Order problem, we have
written a standardized test suite ("sotest.rex") that works across several
operating systems and under different interpreters. The suite, written in
Classic Rexx, has been tested under three operating systems:

• OS/2 — OS/2 4.52 (ArcaOS 5.0.7).
• Ubuntu — Ubuntu 22.04.01 LTS.
• Windows — Windows 11 Pro (10.0.22621.1413).

and against four different interpreters (we have checked two versions of
ooRexx for reasons that will be explained below10):

9Under some Unix-like systems, the "lib" directory has to exist; Windows does not
check for its existence, i.e., it treats constructs like the above in a purely syntactical way.

10In section 4.2.2, titled The hasExtension bug, on page 19.

17

• OS/2 Procedures Language 2/REXX (“Classic Rexx”) (REXXSAA
4.00 3 Feb 1999).

• Regina Rexx (REXX-Regina_3.9.5 5.00 25 Jun 2022) under OS/2,
Ubuntu and Windows.

• Object Rexx for OS/2 (OBJREXX 6.00 18 May 1999).
• Open Object Rexx 5.0.0 (REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23

Dec 2022) under Ubuntu and Windows.
• Open Object Rexx 5.1.0 beta r12651 (REXX-ooRexx_5.1.0(MT)_64-

bit 6.05 10 Mar 2023) under Windows.

4.2 Two bugs in two interpreters
In the process of running the tests, we uncovered two bugs in two different

interpreters.

4.2.1 The SAA bug

The first bug was found in the REXXSAA (“Classic”) Rexx interpreter
under OS/2. REXX.INF, the accompanying help file for REXXSAA, reads
“REXX searches for external functions in the following order: (...) 3. REXX
functions in the current directory, with the current extension[;] 4. REXX
functions along environment PATH, with the current extension (...)”.

However, this does not seem to work as documented, as one can quickly
check with a very simple test: the current extension is never checked, only
the default one. We will refer to this bug as “the SAA bug”.

REXX searches for external functions in the following order:

1. Functions that have been loaded into the macrospace for pre-order
execution

2. Functions that are part of a function package.
3. REXX functions in the current directory, with the current extension
4. REXX functions along environment PATH, with the current exten-

sion
5. REXX functions in the current directory, with the default extension
6. REXX functions along environment PATH, with the default exten-

sion
7. Functions that have been loaded into the macrospace for post-order

execution.

18

[REXX.INF for the REXXSAA OS/2 interpreter (v. 4.00 3 Feb 1999)]

When collecting and comparing our test results, we will amend the test re-
sults for REXXSAA under OS/2 as if the interpreter worked as documented.
This will allow us to unveil a number of interesting coincidences that would
not surface otherwise.

4.2.2 The hasExtension bug

The second bug was found in the Windows version of the ooRexx in-
terpreter (v. 5.0.0). Here is the relevant fragment of the ooRexx Reference
manual:

The second element of the search process is the file extension. If the
routine name contains at least one period, then this routine is extension
qualified. The search locations above will be checked for the target file
unchanged, and no additional steps will be taken. If the routine name
is not extension qualified, then additional searches will be performed by
adding file extensions to the name.

[Open Object Rexx Reference (rexxref.pdf), release 5.0.0, section 7.2.1.1]

The interpreter decides whether a routine “is extension qualified” by call-
ing (the Windows version of) the boolean SysFileSystem::hasExtension
routine, reproduced below.

1 /**
2 * Test if a filename has an extension.
3 *
4 * @param name The name to check.
5 *
6 * @return true if an extension was found on the file, false if there
7 * is no extension.
8 */
9 bool SysFileSystem::hasExtension(const char *name)

10 {
11 const char *endPtr = name + strlen(name) - 1;
12
13 // scan backwards looking for a directory delimiter. This name should
14 // be fully qualified, so we don't have to deal with drive letters
15 while (name < endPtr)
16 {
17 // find the first directory element?
18 if (*endPtr == '/')
19 {
20 return false; // found a directory portion before an extension...

19

21 // we're extensionless
22 }
23 // is this the extension dot?
24 else if (*endPtr == '.')
25 {
26 // return everything from the period on. Keeping the period on is a convenience.
27 return true;
28 }
29 endPtr--;
30 }
31 return false; // not available
32 }

But SysFileSystem::hasExtension has a typo: it checks backwards for
'/', the Unix-like separator character, instead of checking for '\', the Win-
dows separator character. This opens three possibilities:

• The filename has no extension and no directory contains a dot ('.'):
hasExtension will run to its end, and return false (i.e., “filename has
no extension”), which is correct.

• The filename has an extension (i.e., it contains a dot): hasExtension
will find the dot, and return true (i.e., “filename has an extension”),
which is correct.

• The filename has no extension, but one of the directories in the file
path contains a dot: in this case, hasExtension will find the dot, and
return true (i.e., “filename has an extension”), which is not correct.

As it can be seen, the bug is difficult to trigger (one needs a filename of
the form "my.dir\name); this is probably the reason why it was not detected
previously.11 We will refer to this bug as “the hasExtension bug”.

4.3 The directory structure
The test suite uses the simplified directory structure we have described

previously, and places a test program in each and every one of the searchable
places, to see if the corresponding search algorithm is able to find them or
not.

As a starting example, let us go back, for a moment, to the simple calls
example (p. 7). Since the interpreter is supposed to be able to search in the
same, curr and path directories, we can put a simple program in each of
these places, and call every one of them in turn.

11I reported this bug (https://sourceforge.net/p/oorexx/bugs/1870/), attached
a patch and uploaded an updated test case. The updated version of hasExtension is
part of the 5.1.0 beta since commit r12651 (https://sourceforge.net/p/oorexx/code-
0/12651/).

20

https://sourceforge.net/p/oorexx/bugs/1870/
https://sourceforge.net/p/oorexx/code-0/12651/
https://sourceforge.net/p/oorexx/code-0/12651/

(Main folder)

same (same directory)

main.rex Main program, calls same, curr and path

same.rex Returns "same"

curr (current directory)

curr.rex Returns "curr"

path (path directory)

path.rex Returns "path"

For example, in this simplified directory structure, main will first call
same, then curr and then path. These programs will really be very simple,
they will just return their own name (without the ".rex" extension). The
test program will then only have to check the returned value. When a pro-
gram is not found, the corresponding syntax condition will be trapped by a
Signal On trap and handled accordingly.

The full directory structure is depicted in a diagram that can be found
on the following page. We have added an intermediate subdirectory called
"subdir" for future expansion.12

12We will not be using this directory for Rexx tests, but it will come in handy when
testing the features of the Visual Studio C/C++ #include directive.

21

(Main folder)

sotest.rex (Calls subdir/dotdotsame/same/main.rex)

subdir (For future expansion)

dotdotsame (Parent of the same directory)

dotdotsame.rex (Returns "dotdotsame")

same (same directory)

main.rex (Main program)

same.rex (Returns "same")

lib (Child of the same directory)

samelib.rex (Returns "samelib")

dotdotcurr (Parent of the current directory)

dotdotcurr.rex (Returns "dotdotcurr")

curr (current directory)

curr.rex (Returns "curr")

lib (Child of the current directory)

currlib.rex (Returns "currlib")

dotdotpath (Parent of the path directory)

dotdotpath.rex (Returns "dotdotpath")

path (path directory)

path.rex (Returns "path")

lib (Child of the path directory)

pathlib.rex (Returns "pathlib")

Directory structure for sotest.rex

22

The test initiator program, sotest.rex, resides in the main folder. Af-
ter some trivial housekeeping, it calls the main program, main.rex, located
in the "subdir/dotdotsame/same" subdirectory. Main.rex then sets the
current directory to "subdir/dotdotcurr/curr", and, correspondingly, the
path to "subdir/dotdotpath/path". Every program will be first called
without specifying the ".rex" extension, and then it will be called again with
that extension: this has allowed us to unveil the SAA and the hasExtension
bugs (see pp. 18ff).

4.4 Types of tests
4.4.1 Common tests

The first 30 tests are common to all the operating systems and inter-
preters, and to some other environments, like CMD.EXE under Windows and
the Windows SearchPath API. They can be collected in five groups:

Simple calls:

1. Call "same",
2. Call "same.rex",
3. Call "curr",
4. Call "curr.rex",
5. Call "path", and
6. Call "path.rex".

Downwards-relative calls:

7. Call "lib/same",
8. Call "lib/same.rex",
9. Call "lib/curr",

10. Call "lib/curr.rex",
11. Call "lib/path", and
12. Call "lib/path.rex".

Dot-relative calls:

13. Call "./same",
14. Call "./same.rex",
15. Call "./curr",
16. Call "./curr.rex",

23

17. Call "./path", and
18. Call "./path.rex".

Upwards-relative calls:

19. Call "../same",
20. Call "../same.rex",
21. Call "../curr",
22. Call "../curr.rex",
23. Call "../path", and
24. Call "../path.rex".

Upwards-relative calls with a trick:13

25. Call "lib/../../same",
26. Call "lib/../../same.rex",
27. Call "lib/../../curr",
28. Call "lib/../../curr.rex",
29. Call "lib/../../path", and
30. Call "lib/../../path.rex".

4.4.2 Drive-relative tests

Windows and OS/2 have drives and drive letters. This will allow us to
prepare and run some extra tests.

Under Windows, our test program will be able to use the SUBST command
to temporarily assign new drive letters to our current and path directories,
and then change the current directory and the path to point to these new
drives.

OS/2 does not have a SUBST command, so that we will have to manually
assign the new drive letters by a mechanism external to our test program,
and then list these drives (without the colons) in the SOTEST_DRIVES envi-
ronment variable.

Backslash-relative calls (myDir is the directory where main.rex is located,
without the drive letter):

31. Call (myDir"same"),
13Cfr. section 3.4, An internal inconsistency, on p. 16.

24

32. Call (myDir"same.rex"),
33. Call "\dotdotcurr",
34. Call "\dotdotcurr.rex",
35. Call "\dotdotpath", and
36. Call "\dotdotpath.rex".

The idea behind backslash-relative calls is the following: if, in many con-
texts, "\path\filename" is supposed to be relative to the current directory
and ooRexx should check the “same” directory before the current directory,
then "\path\filename" should be first checked against the drive of the same
directory, then against the drive of the current directory, and then, in turn,
against every one of the drives found in the different directories specified in
the paths.

Currently, no Rexx interpreter goes beyond checking the current direc-
tory, but Python’s pathlib module, for example, has an (implied) concept of
backslash-relative filenames which allows this kind of extended checking (see
section 4.5.4, titled Python pathlib and backslash-relative filenames, below,
on page 27).

Letter-relative calls (assume that D: is the same directory drive, X: is the
current directory drive, and Y: is the path directory drive):

37. Call "D:lib\samelib",
38. Call "D:lib\samelib.rex,
39. Call "X:curr\curr",
40. Call "X:curr\curr.rex",
41. Call "Y:path\path", and
42. Call "Y:path\path.rex".

Similarly to backslash-relative calls, the main idea of letter-relative calls is
the following: we already know that, under Windows and OS/2, each drive
has its own current directory. If a particular drive, say D:, has a current
directory of "\dir1\dir2" and we specify a filename as "D:filename", we
end up with "D:\dir1\dir2\filename".

Following this logic, and if ooRexx, as per the manual, has to check
first the “same” directory, one would be entitled to expect that if, say, the
“same” directory was "C:\some\path" and one specified the filename as
"C:more\myname", "C:\some\path\more\myname" would be checked, and
similarly for all the different directories specified in the paths.

Currently, no Rexx interpreter implements this behaviour.

25

Drive-absolute calls (myPath is the directory where main.rex is located, in-
cluding the drive letter; X: is the current directory drive, and Y: is the path
directory drive):

43. Call (myPath"same"),
44. Call (myPath"same.rex"),
45. Call "X:\curr\curr",
46. Call "X:\curr\curr.rex",
47. Call "Y:\path\path", and
48. Call "Y:\path\path.rex".

These calls, being absolute, always work, under all interpreters.

4.5 Special tests
In addition to testing the behaviour of a number of different Rexx inter-

preters under several operating systems, we have also tested, for reference
and comparison purposes, several products and environments more.

4.5.1 The Windows Command Line Interpreter (CMD.EXE)

To test the behaviour of the Windows Command Line interpreter (CMD.EXE),
we used a modified version of our test program. Instead of using a Call in-
struction to call our programs, we used an Address COMMAND instruction.
This allowed us to observe the resolution algorithms employed by CMD.EXE.

4.5.2 The Windows SearchPath API

To test the behaviour of the Windows SearchPath API, we have written
a trivial program, SearchPath.c, to encapsulate the API usage as an .EXE
file.

In this case, we substitute the Call instruction by
Address COMMAND sameDir"/SearchPath" sameDir";.;"pathDir target ".rex"

where target is the file to resolve, sameDir is the directory where main.rex
is located, and pathDir is the path directory.

4.5.3 Checking the C/C++ compilers

We have also checked the behaviour of the gcc and cl (Visual Studio)
C/C++ compilers when handling the #include directive. Both of them hon-

26

our the -Idirectory option (which can be specified multiple times), and both
of them accept without any complaints all the combinations of downward-
relative, upwards-relative and dot-relative filenames. Additionally, the com-
pilers have a “same” directory concept (i.e., the directory where the file using
the #include directive is located), which is extended, in the case of the Visual
Studio compiler, in an interesting, recursive way:

The preprocessor searches for include files in this order:

1. In the same directory as the file that contains the #include state-
ment.

2. In the directories of the currently opened include files, in the re-
verse order in which they were opened. The search begins in the
directory of the parent include file and continues upward through
the directories of any grandparent include files.

3. Along the path that’s specified by each /I compiler option.
4. Along the paths that are specified by the INCLUDE environment

variable.

[Fragment of the Visual Studio compiler documentation]

4.5.4 Python pathlib and backslash-relative filenames

Python’s pathlib is a “module [that] offers classes representing filesystem
paths with semantics appropriate for different operating systems”. We are
especially interested in the description of the slash operator. We extract the
following quote:14

The slash operator helps create child paths, like os.path.join(). If
the argument is an absolute path, the previous path is ignored. On
Windows, the drive is not reset when the argument is a rooted relative
path (e.g., r'\foo'):

[pathlib — Object-oriented filesystem paths — Operators]

The following example (taken from the same source) handles filenames
starting with a (back)slash as relative filenames.

1 >>> PureWindowsPath('c:/Windows', '/Program Files')
2 PureWindowsPath('c:/Program Files')

14See https://docs.python.org/3/library/pathlib.html#operators

27

https://docs.python.org/3/library/pathlib.html#operators

5 Classifying and analysing the results
Our test program, sotest.rex, formats the results of running our test

suite in such a way that the results set is, by itself, a Rexx program. This
program collects the results in a stem, which is then returned when the
program ends. This is very convenient, because it greatly simplifies the
automation of certain tasks, for example, the comparison of different result
sets.

As an example, the following program listing is the output produced by
running sotest.rex using the ooRexx interpreter (5.1.0 beta, r12651) under
Windows 11 (see test Open Object Rexx 5.1.0 beta after commit r12651 under
Windows on page 47).

1 /**
2 sotest.rex -- A Search Order test suite
3
4 Interpreter: REXX-ooRexx_5.1.0(MT)_64-bit 6.05 10 Mar 2023
5 Operating system: WindowsNT
6 Full name: D:\Dropbox\ooRexx\sotest\sotest.rex
7 Main routine: D:\Dropbox\ooRexx\sotest\subdir\dotdotsame\same\main.rex
8
9 Test suite starting on 17 Mar 2023 at 11:22:16

10
11 The following values have been set:
12
13 Same directory: 'D:\Dropbox\ooRexx\sotest\subdir\dotdotsame\same'
14 Current directory: 'D:\Dropbox\ooRexx\sotest\subdir\dotdotcurr\curr'
15 Path: 'D:\Dropbox\ooRexx\sotest\subdir\dotdotpath\path'
16
17 This is ooRexx. Search order is extension-first
18 **/
19 Pass.1 = .true; Pass.1.test = 'same'
20 Pass.2 = .true; Pass.2.test = 'same.rex'
21 Pass.3 = .true; Pass.3.test = 'curr'
22 Pass.4 = .true; Pass.4.test = 'curr.rex'
23 Pass.5 = .true; Pass.5.test = 'path'
24 Pass.6 = .true; Pass.6.test = 'path.rex'
25 Pass.7 = .true; Pass.7.test = 'lib\samelib'
26 Pass.8 = .true; Pass.8.test = 'lib\samelib.rex'
27 Pass.9 = .true; Pass.9.test = 'lib\currlib'
28 Pass.10 = .true; Pass.10.test = 'lib\currlib.rex'
29 Pass.11 = .true; Pass.11.test = 'lib\pathlib'
30 Pass.12 = .true; Pass.12.test = 'lib\pathlib.rex'
31 Pass.13 = .false; Pass.13.test = '.\same'
32 Pass.14 = .false; Pass.14.test = '.\same.rex'
33 Pass.15 = .true; Pass.15.test = '.\curr'
34 Pass.16 = .true; Pass.16.test = '.\curr.rex'
35 Pass.17 = .false; Pass.17.test = '.\path'
36 Pass.18 = .false; Pass.18.test = '.\path.rex'
37 Pass.19 = .false; Pass.19.test = '..\dotdotsame'
38 Pass.20 = .false; Pass.20.test = '..\dotdotsame.rex'
39 Pass.21 = .true; Pass.21.test = '..\dotdotcurr'
40 Pass.22 = .true; Pass.22.test = '..\dotdotcurr.rex'
41 Pass.23 = .false; Pass.23.test = '..\dotdotpath'
42 Pass.24 = .false; Pass.24.test = '..\dotdotpath.rex'

28

43 Pass.25 = .true; Pass.25.test = 'lib\..\..\dotdotsame'
44 Pass.26 = .true; Pass.26.test = 'lib\..\..\dotdotsame.rex'
45 Pass.27 = .true; Pass.27.test = 'lib\..\..\dotdotcurr'
46 Pass.28 = .true; Pass.28.test = 'lib\..\..\dotdotcurr.rex'
47 Pass.29 = .true; Pass.29.test = 'lib\..\..\dotdotpath'
48 Pass.30 = .true; Pass.30.test = 'lib\..\..\dotdotpath.rex'
49 /* Executing 'SUBST Z: D:\Dropbox\ooRexx\sotest\subdir\dotdotcurr' */
50 /* Executing 'SUBST Y: D:\Dropbox\ooRexx\sotest\subdir\dotdotpath' */
51 /* Changing current directory to Z:\ */
52 /* Changing PATH to Y:\ */
53 Pass.31 = .false; Pass.31.test = '\Dropbox\ooRexx\sotest\subdir\dotdotsame\same\same'
54 Pass.32 = .false; Pass.32.test = '\Dropbox\ooRexx\sotest\subdir\dotdotsame\same\same.rex'
55 Pass.33 = .true; Pass.33.test = '\dotdotcurr'
56 Pass.34 = .true; Pass.34.test = '\dotdotcurr.rex'
57 Pass.35 = .false; Pass.35.test = '\dotdotpath'
58 Pass.36 = .false; Pass.36.test = '\dotdotpath.rex'
59 Pass.37 = .false; Pass.37.test = 'D:lib\samelib'
60 Pass.38 = .false; Pass.38.test = 'D:lib\samelib.rex'
61 Pass.39 = .true; Pass.39.test = 'Z:curr\curr'
62 Pass.40 = .true; Pass.40.test = 'Z:curr\curr.rex'
63 Pass.41 = .true; Pass.41.test = 'Y:path\path'
64 Pass.42 = .true; Pass.42.test = 'Y:path\path.rex'
65 Pass.43 = .true; Pass.43.test = 'D:\Dropbox\ooRexx\sotest\subdir\dotdotsame\same\same'
66 Pass.44 = .true; Pass.44.test = 'D:\Dropbox\ooRexx\sotest\subdir\dotdotsame\same\same.rex'
67 Pass.45 = .true; Pass.45.test = 'Z:\curr\curr'
68 Pass.46 = .true; Pass.46.test = 'Z:\curr\curr.rex'
69 Pass.47 = .true; Pass.47.test = 'Y:\path\path'
70 Pass.48 = .true; Pass.48.test = 'Y:\path\path.rex'
71 Pass.0 = 48
72 Return Pass.

5.1 Eliminating extensions
We will now run a short program called "noextension.rex" against the

whole set of our test results. The program has to be located in the a directory
where all the test results reside, and it detects which result sets are extension-
dependent (i.e., which tests show different results for Call "program" and
for Call "program.rex").

Running this program once allows us to be sure that all our test re-
sults are extension-independent, except for os2.rexxsaa (see p. 43), which
exhibits the SAA bug and we will substitute for its manually amended ver-
sion, os2.rexxsaa.fixed (see p. 42), and for windows.oorexx-5.0.0 (see
p. 46), which exhibits the hasExtension bug, and will be substituted by the
patched 5.1.0 beta version of the test, windows.oorexx-5.1.0-beta-r12651
(see p. 47).

29

5.2 Equivalence classes
Some pairs of result sets are identical modulo the tests they have in

common,15 in the sense that the same tests pass or fail for the first and the
second result sets, and some other pairs are not identical. We have written
a test program, "compare.rex" that compares two result sets and tells us if
they are identical or not.

Identity is an equivalence relation: we will thus be able to construct a set
of equivalence classes.

5.2.1 Class 1: Regina, REXXSAA (amended), CMD.EXE

Using compare.rex, we can verify that our result sets for Regina Rexx
under Windows (windows.regina, see p. 48), OS/2 (os2.regina, see p. 40)
and Ubuntu (ubuntu.regina, see p. 45) are equivalent.

Additionally, these are equivalent to the amended result set for the OS/2
REXXSAA interpreter,16 (os2.rexxsaa.fixed, see p. 42), and to the result
set of the special CMD.EXE test (windows.cmd, see p. 49).

Neither of these interpreters and environments use the “same” or (caller’s)
directory, so that all the same tests will fail. Additionally, the members of
this equivalence class are the most restrictive of all three. We will find a nice
description of these restrictions in The Regina Rexx Interpreter, the manual
for version 3.9.5 of Regina.

1.4.2 External Rexx programs

[...]

When processing an environment variable, the content is split into
the different paths and each path is processed separately. Note that the
search algorithm to this point is ignored if the program name contains
a file path specification. eg. if "CALL .\MYPROG" is called, then no
searching of REGINA_MACROS or PATH is done; only the concatenation of
suffixes is carried out.

[The Regina Rexx Interpreter (regina.pdf), version 3.9.5, section 1.4.2.]

15Remember that in Unix-like systems we run 30 tests, but in systems that have drive
letters the number of tests is 48.

16That is, the one with the SAA bug fixed.

30

“If the program name contains a file path specification” is implemented in
a very simple way: a check for a separator character (i.e., "\" under Windows
or OS/2 and "/" under Unix-like systems) is run against the program name.17

5.2.2 Class 2: Object Rexx for OS/2

The result set for Object Rexx for OS/2 (os2.objrexx, see p. 41) is a
singleton, i.e., it forms an equivalence class by itself, since no other result
sets are equivalent to it.

Object Rexx does not have a concept of a “same” directory, but it
works happily with filenames that start with one or two dots followed by
a backslash: it checks these filenames against the current directory, and then
against all the directories specified in the PATH environment variable.

5.2.3 Class 3: ooRexx (5.1.0 beta) and Windows SearchPath

The third equivalence class is formed by the ooRexx result sets un-
der Windows (windows.oorexx-5.1.0-beta-r12651, see p. 47) and under
Ubuntu (ubuntu.oorexx, see p. 44), and the Windows SearchPath API
(windows.searchpath, see p. 50).

These tests have a notion of the “same” directory, but, compared to
Object Rexx, they backpedal: when a filename starts with one or two dots
followed by a separator, only the current directory is searched.

5.3 In summary
Class 1, that is, Regina, Classic Rexx and the CMD.EXE command line in-

terpreter, offer the most restrictive of all the behaviours we have tested. This
should not be surprising, since Classic Rexx was presented, at the moment
under the name “OS/2 Procedures Language 2/REXX”, and it was described
as follows:18

Brief Description of the REstructured eXtended eXecutor
Language

17See files.c, routine get_external_routine, and configur.h in the Regina source
code.

18Procedures Language/2. REXX reference, S10G-6268-00, dated December
1991, is part of the OS/2 2.0 Technical Library. A copy can be found
in the https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/
historic/references/rexx directory.

31

https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/historic/references/rexx
https://github.com/RexxLA/rexx-repository/tree/master/ARB/standards/historic/references/rexx

The REstructured eXtended eXecutor (REXX) language is a lan-
guage particularly suitable for:

• Command procedures
• Application front ends
• User-defined macros (such as editor subcommands)
• Prototyping
• Personal computing.

[Procedures Language/2. REXX reference, version 2.00, p. 2-1]

The first item in the list above is “Command procedures”, and there is
no mention of the possibility of developing serious applications — even when
quite big servers like LISTSERV (in BITNET), NETSERV (in EARN) or TOOLS
(in VNET) had already been in widespread use. If the focus is centred on
“command procedures”, it should not be surprising that some aspects of the
behaviour of the Classic Rexx interpreter are modelled against the behaviour
of the command line interpreters. Regina, which has a long history, is also
following, in this respect, the behaviour of the Classic Rexx interpreter.

Class 2, that is, Object Rexx for OS/2, does not have the concept of a
“same” directory, but has no restrictions in the form of the filenames in ac-
cepts for Call or ::Requires. In some sense, it is the most advanced of all
the tested interpreters. Object Rexx is a much more mature language than
Classic Rexx, and with its SmallTalk-like image, first-level classes, objects,
and message sending, it is clearly conceived as a means to develop large,
professional applications. Unsurprisingly, it then borrows concepts found
in other programming environments: except for the absence of the “same”
directory concept, its external file name resolution is the same used by the
usual C/C++ compilers.

Class 3, that is, ooRexx and the Windows SearchPath API, introduces
the concept of the “same” directory, but at the same time it back-pedals,
with respect to Object Rexx, in that it has a more restrictive view of the
external file name resolution (that is just the anomaly that started our re-
search).

In retrospect, our hopes that we would find a “Rexx way” of handling the
external search problem (see section 3.5, Elements for a decision, on p. 17)
seem to have been unfounded. There is no “Rexx way”, but nonetheless

32

a certain trend insinuates itself: the consideration of Rexx slowly mutates,
historically, starting from a “command procedure” paradigm, and tending
towards a more mature programming language paradigm.

There is no “Rexx way”, but, anyway, not everything is lost: we have
learnt a great deal of things by designing and running our tests, and by
referring to so many documents.

Indeed, we could continue our research, and try to expand, still more,
our knowledge and our understanding of the external search problem. This
knowledge might be very useful for new implementations and variants of
Rexx; it can also be valuable information for the RexxLA Architecture Re-
view Board (arb) to ponder, and may help to design a future Rexx standard
(Language level 7?); finally, it may give us more elements to definitively
settle the anomaly.

Our next steps will consist of constructing a (programming) model of the
external search order algorithms.

6 Modelling external search algorithms
We have written an experimental set of ooRexx classes that attempt to

model the behaviour of all the interpreters and environments that we have
tested. We will present here a high-level definition of these classes. The basic
idea is that we should be able to write code similar to the following.

1 filename = "path/name" /* Our (probably relative) filename */
2 searcher = .ExternalSearchVariant~new(args) /* Create a search algorithm instance */
3 program = searcher~search(filename) /* Ask the instance to search for a filename */
4 If program~isNil Then /* A value of .nil indicates */
5 Raise Syntax 43.1 Array(filename) /* that the file was not found */
6 Else Call (program) args /* File was found. Call it! */

Let us analyse this code fragment. First of all, we initialize an instance of
a particular search algorithm called ExternalSearchVariant. This instance
provides a search method that implements this particular search algorithm.
Sending a search message to the instance will return .nil if the search does
not succeed, or an absolute, resolved, filename if it does.

All external search classes will be subclasses of an abstract class, called
ExternalSearch, WHICH will encapsulate the logic common to all the
search algorithms.

6.1 Location-first and qualifier-first algorithms
An external search algorithm receives as its arguments a list of locations

(directories, minidisks, etc.) and a list of qualifiers (extensions, filetypes,

33

etc.).
An algorithm is location-first when every supplied location is completely

searched in turn, that is, when the first location is checked against all the sup-
plied qualifiers, then the second location is checked, and so on. The abstract
class LocationFirstExternalSearch is a subclass of ExternalSearch that
implements this behaviour. Regina Rexx, for example, uses a directory-first
algorithm.

An algorithm is qualifier-first when every supplied qualifier is completely
searched in turn, that is, when the first qualifier is checked in every of the sup-
plied locations, then the second qualifier is checked, and so on. The abstract
class class QualifierFirstExternalSearch is a subclass of ExternalSearch
that implements this behaviour. ooRexx, for example, uses an extension-first
algorithm.

6.2 Location-exception and qualifier-exception clauses
Every external search algorithm can define a location-exception clause

and a qualifier-exception clause.
A location-exception clause examines the supplied locations and qualifiers,

as well as the filename to search, and may decide that the filename will not be
searched against all the locations, but only against a distinguished subset of
these locations. For example, Regina Rexx restricts the search to the current
directory when the filename contains a separator, and ooRexx restricts the
search in the same way when the filename starts with one or two dots followed
by a separator character.

A qualifier-exception clause examines the supplied locations and quali-
fiers, as well as the filename to search, and may decide that the filename will
not be searched by adding all the qualifiers, but only a distinguished subset
of these qualifiers. For example, Regina Rexx does not try to add extensions
if a known extension is found, and ooRexx does not try to add extensions if
the filename contains a dot.

6.3 The composition operation
At a certain point, a search algorithm is presented with a location, a file-

name, and a qualifier (which may be empty), and has to produce a complete,
absolute filename and check whether the corresponding file exists or not.
This operation, which we call the composition operation is not so simple as a
naïve approach to the problem may suggest, due to the fact that the location
may itself be relative, some filenames may be backslash-relative, or letter-
relative, etc. Every composition algorithm may return one or more values

34

to check. For example, ooRexx under Unix-like systems attempts to find a
mixed case or uppercase filename as is, and then, if not found, it attempts
to find the file again, after transforming the filename to lowercase.

Every external search class may implement its own, independent, com-
position operation.

6.4 The ooRexxExternalSearch class
Since ooRexx uses an extension-first algorithm, its corresponding class,

ooRexxExternalSearch, will be a subclass of QualifierFirstExternal-
Search.

Instances of ooRexxExternalSearch can be fully customized at initial-
ization time:

1 mySearch = ooRexxExternalSearch~new(-
2 (- /* Directories, */
3 "same=<same directory>", -
4 "current=<current directory>", -
5 "application=<application-defined path>", - /* paths, and */
6 "rexx_path=<path>", -
7 "path=<path>", -
8), -
9 (- /* extensions */

10 "same=<same extension>", -
11 "application=<application-defined extensions>", -
12) -
13)

If an argument is not specified, the class provides the expected default.
For example, we can force the search to proceed as if the current directory
was, say, /this/dir, by providing a current= argument, but if no argu-
ment is provided, ooRexxExternalSearch will default to the actual current
directory.

6.5 The ReginaRexxExternalSearch class
Since Regina Rexx uses a directory-first algorithm, its corresponding

class, ReginaRexxExternalSearch, will be a subclass of LocationFirst-
ExternalSearch.

Instances of ReginaRexxExternalSearch can be fully customized at ini-
tialization time:

1 mySearch = ReginaRexxExternalSearch~new(-
2 (-
3 "regina_macros=<path>", - /* Paths, */
4 "current=<current directory>", - /* directories */

35

5 "path=<path>", - /* and */
6), -
7 (- /* extensions */
8 "same=<same extension>", -
9 "regina_suffixes=<list>", -

10) -
11)

As with ooRexxExternalSearch, if an argument is not specified, the class
provides the expected default.

6.6 The driveRelative boolean attribute
The ExternalSearch class has a settable boolean attribute called drive-

Relative, with a default value of .false. When driveRelative is .true,
the composition operation is slightly modified, so that drive-relative filenames
are resolved like in the pathlib Python module. This is experimental at the
moment.

6.7 The ooRexxEnhancedExternalSearch class
The ooRexxEnhancedExternalSearch class fixes the anomaly by remov-

ing the checks for ".\" and "..\", and by additionally setting the value of
driveRelative to .true. All 48 tests pass (under Windows) when we use
this enhanced external search algorithm.

7 A pluggable external search system
Using the security manager feature of ooRexx, we have devised an ex-

perimental system of pluggable external search algorithms. This is currently
implemented by the "[]=" class method of the ExternalSearch class. The
following code fragment illustrates the technique:

1 /* To be able to plug a security manager, we need a Routine object */
2 routine = .Routine~newFile("/path/to/my/program.rex")
3
4 /* Routine will be called, but with our enhanced search order in effect */
5 .ExternalSearch[routine] = .ooRexxEnhancedExternalSearch
6
7 /* Now call our routine with the appropiate parameters. Every CALL instruction in */
8 /* "program.rex" will be resolved according to the Rexx Enhanced External Search */
9 /* algorithm. The same is true for every program called from "program.rex" (we */

10 /* install the security manager in a recursive way). */
11 routine~call(parameters)
12
13 ::Requires ExternalSearch

36

If the comments and the blank lines are deleted, this is only four lines of
code, which in turn are equivalent to

1 Call "/path/to/my/program.rex" parameters

but with the guarantee that all the calls will be resolved using our enhanced
algorithm.

Of course instead of ooRexxEnhancedExternalSearch one can use any
non-abstract subclass of ExternalSearch. This allows, for example, to run a
program using the ooRexx interpreter, but resolve Call statements according
to the Regina Rexx rules.

The security manager does not currently support the ::Requires direc-
tive,19 so that, unfortunately, our implementation cannot go beyond a mere
proof-of-concept.

8 Further work
There are several avenues that we can pursue if we want to continue and

expand our research. I will list several of these avenues below, in no parti-
cular order, and without any pretension of exhaustivity.

1. Find out what happens when the directories specified (in a path or
otherwise) are themselves relative, e.g, '..' or 'lib'. Write some
tests, and show how the different interpreters, tools and environments
handle these cases.

2. The drive-relative tests need more work. In particular, the drive-
absolute tests (bad nomenclature, by the way, since it is self-contradictory)
seem a little redundant, since they always pass, for all interpreters and
operating systems. The use of the driveRelative attribute is a quick
hack that has allowed us to get quite a lot of interesting information,
but it indicates that the conceptual work about the topic is, in this
respect, lacking.

3. It would be nice if the conceptual categories and programs we devel-
oped could provide elements to the Rexx Architecture Review Board of
RexxLA to prepare a new standard for the Rexx language. Feedback
from the arb would be of great value.

4. Can our programs model the different Rexx for VM implementations?
How about Rexx for z/OS? And Rexx for z/VSE? Are these completely

19See SourceForge bug #1886 (https://sourceforge.net/p/oorexx/bugs/1886/).

37

https://sourceforge.net/p/oorexx/bugs/1886/

isolated worlds, or is it possible to create useful abstractions that en-
compass OS/2, Windows, the Unix-like systems, and these other oper-
ating systems at the same time?

5. Perfect our pluggable system to make it usable in large applications.
We would first need the security manager to work as documented20

with the ::Requires directive.

9 Conclusions
We started with an apparently simple anomaly that seemed to promise us

nothing, but, in the end, we have experienced an unexpectedly long journey,
and a very enjoyable one at that. We have delved into the source code of
ooRexx, where we have found the reasons for our anomaly; we have conjec-
tured that a “Rexx way” of doing things could exist, and, in search of that
hypothetical Rexx way, we have devised a nice collection of tests, run them,
and analysed and compared their results.

There was, we have had to conclude, after all, no “Rexx way” of do-
ing things, regarding the external search problem, but we have learnt a big
number of things in the process of coming to that conclusion.

To further widen our perspective, and to better conceptualize the results
of our tests, we implemented a rich set of ooRexx classes; they can model
the behaviour of all the environments that we have been testing, and ad-
ditionally they can also define new, arbitrary, external search algorithms.
We presented, as an example, a sample enhanced ooRexx external search
class that completely solves the anomaly and has some interesting additional
properties.

We finished our investigation by demonstrating a proof-of-concept imple-
mentation for a pluggable external search system.

And that’s it. For the moment. As we already said, above: this has been
a very pleasant journey.

Tregurà de Dalt-Barcelona, February 14–May 12 2023

20See bugs no. 1885 (https://sourceforge.net/p/oorexx/bugs/1885/) and 1886
(https://sourceforge.net/p/oorexx/bugs/1886/).

38

https://sourceforge.net/p/oorexx/bugs/1885/
https://sourceforge.net/p/oorexx/bugs/1886/

Appendices: Test results
The tables that can be found in the following pages summarize the results of
our tests. We have only included that part of the results that is common to
all the operating systems (see section 4.4.1, Common tests, on page 23). The
full set of result files, the test programs and the experimental set of classes
and systems can all be downloaded from the places indicated in section ,
References and sources, on page 6.

39

Regina Rexx under OS/2

Test name
os2.regina

Test Result
same Failed
same.rex Failed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Failed
lib\samelib.rex Failed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Failed
lib\pathlib.rex Failed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Failed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Failed
lib\..\..\dotdotpath.rex Failed

40

Object Rexx under OS/2

Test name
os2.objrexx

Test Result
same Failed
same.rex Failed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Failed
lib\samelib.rex Failed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Passed
lib\pathlib.rex Passed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Passed
.\path.rex Passed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Passed
..\dotdotpath.rex Passed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Failed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Passed
lib\..\..\dotdotpath.rex Passed

41

Classic Rexx under OS/2, with the SAA bug fixed

Test name
os2.rexxsaa.fixed

Test Result
same Passed
same.rex Passed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Passed
lib\samelib.rex Passed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Passed
lib\pathlib.rex Passed
.\same Passed
.\same.rex Passed
.\curr Passed
.\curr.rex Passed
.\path Passed
.\path.rex Passed
..\dotdotsame Passed
..\dotdotsame.rex Passed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Passed
..\dotdotpath.rex Passed
lib\..\..\dotdotsame Passed
lib\..\..\dotdotsame.rex Passed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Passed
lib\..\..\dotdotpath.rex Passed

42

Classic Rexx (rexxsaa) under OS/2

Test name
os2.rexxsaa

Test Result
same Failed
same.rex Failed
curr Failed
curr.rex Passed
path Failed
path.rex Passed
lib\samelib Failed
lib\samelib.rex Failed
lib\currlib Failed
lib\currlib.rex Passed
lib\pathlib Failed
lib\pathlib.rex Failed
.\same Failed
.\same.rex Failed
.\curr Failed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Failed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Failed
lib\..\..\dotdotcurr Failed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Failed
lib\..\..\dotdotpath.rex Failed

43

Open Object Rexx under Ubuntu

Test name
ubuntu.oorexx

Test Result
same Passed
same.rex Passed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib/samelib Passed
lib/samelib.rex Passed
lib/currlib Passed
lib/currlib.rex Passed
lib/pathlib Passed
lib/pathlib.rex Passed
./same Failed
./same.rex Failed
./curr Passed
./curr.rex Passed
./path Failed
./path.rex Failed
../dotdotsame Failed
../dotdotsame.rex Failed
../dotdotcurr Passed
../dotdotcurr.rex Passed
../dotdotpath Failed
../dotdotpath.rex Failed
lib/../../dotdotsame Passed
lib/../../dotdotsame.rex Passed
lib/../../dotdotcurr Passed
lib/../../dotdotcurr.rex Passed
lib/../../dotdotpath Passed
lib/../../dotdotpath.rex Passed

44

Regina Rexx under Ubuntu

Test name
ubuntu.regina

Test Result
same Failed
same.rex Failed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib/samelib Failed
lib/samelib.rex Failed
lib/currlib Passed
lib/currlib.rex Passed
lib/pathlib Failed
lib/pathlib.rex Failed
./same Failed
./same.rex Failed
./curr Passed
./curr.rex Passed
./path Failed
./path.rex Failed
../dotdotsame Failed
../dotdotsame.rex Failed
../dotdotcurr Passed
../dotdotcurr.rex Passed
../dotdotpath Failed
../dotdotpath.rex Failed
lib/../../dotdotsame Failed
lib/../../dotdotsame.rex Failed
lib/../../dotdotcurr Passed
lib/../../dotdotcurr.rex Passed
lib/../../dotdotpath Failed
lib/../../dotdotpath.rex Failed

45

Open Object Rexx 5.0.0 under Windows

Test name
windows.oorexx-5.0.0

Test Result
same Passed
same.rex Passed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Passed
lib\samelib.rex Passed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Passed
lib\pathlib.rex Passed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Failed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Passed
lib\..\..\dotdotcurr Failed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Failed
lib\..\..\dotdotpath.rex Passed

46

Open Object Rexx 5.1.0 beta after commit r12651 under
Windows

Test name
windows.oorexx-5.1.0-beta-r12651
Test Result
same Passed
same.rex Passed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Passed
lib\samelib.rex Passed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Passed
lib\pathlib.rex Passed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Passed
lib\..\..\dotdotsame.rex Passed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Passed
lib\..\..\dotdotpath.rex Passed

47

Regina Rexx under Windows

Test name
windows.regina

Test Result
same Failed
same.rex Failed
curr Passed
curr.rex Passed
path Passed
path.rex Passed
lib\samelib Failed
lib\samelib.rex Failed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Failed
lib\pathlib.rex Failed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Failed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Failed
lib\..\..\dotdotpath.rex Failed

48

The Windows Command Line Interface (CMD.EXE)

Test name
windows.cmd

Test Result
same Failed
same.rex Failed
curr Passed
curr.rex Passed
pth Passed
pth.rex Passed
lib\samelib Failed
lib\samelib.rex Failed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Failed
lib\pathlib.rex Failed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Failed
lib\..\..\dotdotsame.rex Failed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Failed
lib\..\..\dotdotpath.rex Failed

49

The Windows SearchPath API

Test name
windows.SearchPath

Test Result
same Passed
same.rex Passed
curr Passed
curr.rex Passed
pth Passed
pth.rex Passed
lib\samelib Passed
lib\samelib.rex Passed
lib\currlib Passed
lib\currlib.rex Passed
lib\pathlib Passed
lib\pathlib.rex Passed
.\same Failed
.\same.rex Failed
.\curr Passed
.\curr.rex Passed
.\path Failed
.\path.rex Failed
..\dotdotsame Failed
..\dotdotsame.rex Failed
..\dotdotcurr Passed
..\dotdotcurr.rex Passed
..\dotdotpath Failed
..\dotdotpath.rex Failed
lib\..\..\dotdotsame Passed
lib\..\..\dotdotsame.rex Passed
lib\..\..\dotdotcurr Passed
lib\..\..\dotdotcurr.rex Passed
lib\..\..\dotdotpath Passed
lib\..\..\dotdotpath.rex Passed

50

	Acknowledgements
	Introduction
	References and sources

	An anomaly
	Simple calls
	Downwards-relative calls
	The anomaly: upwards-relative calls

	A technical explanation
	In the Unix-like side of things
	In the Windows side of things

	How to interpret the anomaly
	As an interpreter bug
	As a documentation bug
	A limitation that is very difficult to fix
	An internal inconsistency
	Elements for a decision

	A number of tests
	Interpreters and operating systems
	Two bugs in two interpreters
	The SAA bug
	The hasExtension bug

	The directory structure
	Types of tests
	Common tests
	Drive-relative tests

	Special tests
	The Windows Command Line Interpreter (CMD.EXE)
	The Windows SearchPath API
	Checking the C/C++ compilers
	Python pathlib and backslash-relative filenames

	Classifying and analysing the results
	Eliminating extensions
	Equivalence classes
	Class 1: Regina, REXXSAA (amended), CMD.EXE
	Class 2: Object Rexx for OS/2
	Class 3: ooRexx (5.1.0 beta) and Windows SearchPath

	In summary

	Modelling external search algorithms
	Location-first and qualifier-first algorithms
	Location-exception and qualifier-exception clauses
	The composition operation
	The ooRexxExternalSearch class
	The ReginaRexxExternalSearch class
	The driveRelative boolean attribute
	The ooRexxEnhancedExternalSearch class

	A pluggable external search system
	Further work
	Conclusions
	Appendices: Test results
	Regina Rexx under OS/2
	Object Rexx under OS/2
	Classic Rexx under OS/2, with the SAA bug fixed
	Classic Rexx (rexxsaa) under OS/2
	Open Object Rexx under Ubuntu
	Regina Rexx under Ubuntu
	Open Object Rexx 5.0.0 under Windows
	Open Object Rexx 5.1.0 beta after commit r12651 under Windows
	Regina Rexx under Windows
	The Windows Command Line Interface (CMD.EXE)
	The Windows SearchPath API

